Math, asked by sanjana0000, 1 year ago

Show that square of any odd integer is of the form 4q+1 for some integer q

Answers

Answered by Anonymous
16

Step-by-step explanation:


Note :- I am taking q as some integer.



Let positive integer a be the any positive integer.

Then, b = 4 .


By division algorithm we know here

0 ≤ r < 4 , So r = 0, 1, 2, 3.


When r = 0


a = 4m


Squaring both side , we get


a² = ( 4m )²


a² = 4 ( 4m​²)


a² = 4q , where q = 4m²


When r = 1


a = 4m + 1


squaring both side , we get


a² = ( 4m + 1)²


a² = 16m² + 1 + 8m


a² = 4 ( 4m² + 2m ) + 1


a² = 4q + 1 , where q = 4m² + 2m


When r = 2


a = 4m + 2


Squaring both hand side , we get


a² = ​( 4m + 2 )²


a² = 16m² + 4 + 16m


a² = 4 ( 4m² + 4m + 1 )


a² = 4q , Where q = ​ 4m² + 4m + 1


When r = 3


a = 4m + 3


Squaring both hand side , we get


a² = ​( 4m + 3)²


a² = 16m² + 9 + 24m


a² = 16m² + 24m ​ + 8 + 1


a² = 4 ( 4m² + 6m + 2) + 1


a² = 4q + 1 , where q = 4m² + 6m + 2



Hence ,Square of any positive integer is in form of 4q or 4q + 1 , where q is any integer.



THANKS



#BeBrainly.



Answered by ShuchiRecites
3

Step-by-step explanation :

Let any positive odd integer be a. We know that,

a = 2m + 1

On squaring both sides,

a² = ( 2m + 1 )²

a² = 4m² + 4m + 1

a²= 4( m² + m ) + 1

According to Euclid's Lemma, a = 4q + 1 where 0 ≤ r < 4

So, a² = 4q + 1 ( where m² + m = q )

Q.E.D

Similar questions