Show that square of any positive integer can not be of the form 3m+2,where m is a natural number
Answers
Answered by
4
According to Euclid division lemma
a=bq+r where 0<= r < b
Therefore 0 = < r < 3
Therefore r= 0 , 1 , 2
If a=bq+r where r = 0
a=3q+0
squaring both sides
a2= (3q+0)2
a2= 9q2
a2= 3×3× q2
3m where, m= 3q2
If a=bq+r where r = 1
a=3q+1
squaring both sides
a2= (3q+1)2
a2= 9q2+6q+1
a2= 3 (3q2+2q+1)
3m+1 where, m= 3q2 + 1
If a=bq+r where r =2
a=3q+2
squaring both sides
a2= (3q+2)2
a2 = 9q2 + 12q + 4
a2 = 3 (3q2 + 4q ) +4
a2= 3m+4
So, square of any poistive integer ccan't form 3m +2
a=bq+r where 0<= r < b
Therefore 0 = < r < 3
Therefore r= 0 , 1 , 2
If a=bq+r where r = 0
a=3q+0
squaring both sides
a2= (3q+0)2
a2= 9q2
a2= 3×3× q2
3m where, m= 3q2
If a=bq+r where r = 1
a=3q+1
squaring both sides
a2= (3q+1)2
a2= 9q2+6q+1
a2= 3 (3q2+2q+1)
3m+1 where, m= 3q2 + 1
If a=bq+r where r =2
a=3q+2
squaring both sides
a2= (3q+2)2
a2 = 9q2 + 12q + 4
a2 = 3 (3q2 + 4q ) +4
a2= 3m+4
So, square of any poistive integer ccan't form 3m +2
Answered by
10
Hey there !!
Let "a" be any positive integer , and
b = 3q
here ,
r = 0 , 1 , 2
when r = 0
a = 3q
a² = (3q)²
= 9q²
= 3(3q²)
= 3m [ where m = 3q² ] ---> [1]
when r = 1
a = 3q + 1
a² = ( 3q + 1 )²
= 9q² + 6q + 1
= 3 ( 3q² + 2q) + 1
= 3m + 1 [ where m = 3q² + 2q ] ---> [2]
where r = 2
a = 3q + 2
a² = (3q + 2 )²
=9q² +12q + 4
= 9q² +12q + 3 + 1
= 3(3q² +4q + 1 ) + 1
= 3 m +1 [ where m = 3q² +4q + 1 ] ---> [3]
from 1 , 2 and 3 ,
its clear that the square of any positive integer can not be of the form 3m+2,where m is a natural number
Let "a" be any positive integer , and
b = 3q
here ,
r = 0 , 1 , 2
when r = 0
a = 3q
a² = (3q)²
= 9q²
= 3(3q²)
= 3m [ where m = 3q² ] ---> [1]
when r = 1
a = 3q + 1
a² = ( 3q + 1 )²
= 9q² + 6q + 1
= 3 ( 3q² + 2q) + 1
= 3m + 1 [ where m = 3q² + 2q ] ---> [2]
where r = 2
a = 3q + 2
a² = (3q + 2 )²
=9q² +12q + 4
= 9q² +12q + 3 + 1
= 3(3q² +4q + 1 ) + 1
= 3 m +1 [ where m = 3q² +4q + 1 ] ---> [3]
from 1 , 2 and 3 ,
its clear that the square of any positive integer can not be of the form 3m+2,where m is a natural number
Similar questions