Show that square of any positive integer cannot be of the form of 5m + 2 or 5m + 3 for some integer m.
Answers
Answered by
5
Answer:let the positive let the positive integer be a
a=bq+r
b=5 r=0,1,2,3,4
therefore,
a=5q
a=5q+1
a=5q+2
a=5q=3
a=5q+4
Case1: a=5q
square both sides
a²=(5q)²
a²=25q²
a²=5(5q²)
a²=5m
m=(5q²)
case 2: a=5q+1
square both sides
a²=(5q+1)²
a²=25q²+1+10q
a²=5(5q²+2q)+1
a²=5m+1
m=(5q²+2q)
Case3: a=5q+2
square both sides
a²=(5q+2)²
a²=25q²+4+20q
a²=5(5q²+4q)+4
a²=5m+4
m=(5q²+4q)
Case4: a=5q+3
square both sides
a²=(5q+3)²
a²=25q²+9+30q
a²=25q²+5+4+30q
a²=5(5q²+1+6q)+4
a²=5m+4
m=(5q²+1+6q)
Case 5:a=5q+4
square both sides
a²=(5q+4)²
a²=25q²+16+40q
a²=25q²+15+1+40q
a²=5(5q²+3+8q)+1
a²=5m+1
m=(5q²+3+8q)
therfore, the square of any positive integer cannot be of the form 5m+2 or 5m+3 for some integer m but can be of the form 5m, 5m+1 or 5m+4.
Similar questions