Math, asked by yj122816gmailcom, 2 months ago

show that square of any positive integer cannot be of the form 5q + 2 or 5q +3 for any integer q​

Attachments:

Answers

Answered by mohsin962
1

Answer:

Step-by-step explanation:

Let a be any positive integer

By Euclid's division lemma

a=bm+r

a=5m+r   (when b=5)

So, r can be 0,1,2,3,4  

Case 1:

∴a=5m   (when r=0)

a  

2

=25m  

2

 

a  

2

=5(5m  

2

)=5q

where q=5m  

2

 

Case 2:

when r=1

a=5m+1

a  

2

=(5m+1)  

2

=25m  

2

+10m+1

a  

2

=5(5m  

2

+2m)+1

=5q+1    where q=5m  

2

+2m

Case 3:

a=5m+2

a  

2

=25m  

2

+20m+4

a  

2

=5(5m  

2

+4m)+4

5q+4

where q=5m  

2

+4m

Case 4:

a=5m+3

a  

2

=25m  

2

+30m+9

=25m  

2

+30m+5+4

=5(5m  

2

+6m+1)+4

=5q+4

where q=5m  

2

+6m+1

Case 5:

a=5m+4

a  

2

=25m  

2

+40m+16=25m  

2

+40m+15+1

=5(5m  

2

+8m+3)+1

=5q+1       where q=5m  

2

+8m+3

From these cases, we see that square of any positive no can't be of the form 5q+2,5q+3.

Answered by MystiiNuts
130

Question:

Show that square of any positive integer cannot be of the form 5q + 2 or 5q +3 for any integer q.

Solution:

Let x be any positive integer. When we divide x by \mathsf{5} , the remainder is either 0 or 1 or 2 or 3 or 4. So, x can be written as-: x=5m or x=5m+1 or x=5m+2 or x=5m+3 or x=5m+4 . Thus, we have the following cases:

Case ɪ When, x=5m:

ㅤㅤ:\implies \mathsf{x²=25m²}

ㅤㅤ\mathsf{x²=5(5m²)=5q\: where\: q=5m²}

Case ɪɪ When, x=5m+1:

ㅤㅤ:\implies \mathsf{x²=(5m+1)²}

ㅤㅤ:\implies \mathsf{x²=25m²+10m+1}

ㅤㅤ:\implies \mathsf{x²=5(5m²+2m)+1}

ㅤㅤ\mathsf{x²=5q+1\: where\: q=5m²+2m}

Case ɪɪɪ When x=5m+2:

ㅤㅤ:\implies \mathsf{x²=(5m+2)²}

ㅤㅤ:\implies \mathsf{x²=25m²+20m+4}

ㅤㅤ:\implies \mathsf{x²=5(5m²+4m)+4}

ㅤㅤ\mathsf{x²=5q+4\: where\: q=5m²+4m}

Case ɪᴠ When x=5m+3:

ㅤㅤ:\implies \mathsf{x²=(5m+3)²}

ㅤㅤ:\implies \mathsf{x²=25m²+30m+9}

ㅤㅤ:\implies \mathsf{x²=(5m²+30m+5)+4}

ㅤㅤ:\implies \mathsf{x²=5(5m²+6m+1)+4}

ㅤㅤ\mathsf{x²=5q+4\:where,q=5m²+6m+1}

Case ᴠ When, \mathsf{x=5m+4:}

ㅤㅤ:\implies \mathsf{x²=(5m+4)²}

ㅤㅤ:\implies \mathsf{x²=25m²+40m+16}

ㅤㅤ:\implies \mathsf{x²=5(5m²+8m+3)+1}

ㅤㅤ\mathsf{x²=5q+1\:where,q=5m²+8m+3}

Hence, \mathsf{x} is of the form 5q or 5q+1 , 5q+4. So it cannot be of the form 5q+2 or 5q+3 .

__________________________________________

Similar questions