show that square of any positive integer is either of form 5m , 5m+1 , 5m-1 where m is an integer
Answers
Sol : Let x be any integer Then x = 5m or x = 5m+1 or x = 5m+4 for integer x. If x = 5m, x2 = (5m)2 = 25m2 = 5(5m2) = 5n (where n = 5m2 ) If x = 5m+1, x2 = (5m+1)2= 25m2+10m+1 = 5(5m2+2m)+1 = 5n+1 (where n = 5m2+2m ) If x = 5m+4, x2 = (5m+4)2 = 25m2+40m+16 = 5(5m2+8m+3)+1 = 5n+1 (where n = 5m2+8m+3 ) ∴in each of three cases x2iseither of the form 5n or 5n+1 for integer n.
Step-by-step explanation:
Question : -
→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.
▶ Step-by-step explanation : -
Let ‘a’ be the any positive integer .
And, b = 5 .
→ Using Euclid's division lemma :-
==> a = bq + r ; 0 ≤ r < b .
==> 0 ≤ r < 5 .
•°• Possible values of r = 0, 1, 2, 3, 4 .
→ Taking r = 0 .
Then, a = bq + r .
==> a = 5q + 0 .
==> a = ( 5q )² .
==> a = 5( 5q² ) .
•°• a = 5m . [ Where m = 5q² ] .
→ Taking r = 1 .
==> a = 5q + 1 .
==> a = ( 5q + 1 )² .
==> a = 25q² + 10q + 1 .
==> a = 5( 5q² + 2q ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .
→ Taking r = 2 .
==> a = 5q + 2 .
==> a = ( 5q + 2 )² .
==> a = 25q² + 20q + 4 .
==> a = 5( 5q² + 4q ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .
→ Taking r = 3 .
==> a = 5q + 3 .
==> a = ( 5q + 3 )² .
==> a = 25q² + 30q + 9 .
==> a = 25q² + 30q + 5 + 4 .
==> a = 5( 5q² + 6q + 1 ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .
→ Taking r = 4 .
==> a = 5q + 4 .
==> a = ( 5q + 4 )² .
==> a = 25q² + 40q + 16 .
==> a = 25q² + 40q + 15 + 1 .
==> a = 5( 5q² + 8q + 3 ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .
→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .
✔✔ Hence, it is proved ✅✅.