show that square of any positive integer is in the form of 5q ,5q + 1,5 q+ 4 for some integer q
Answers
Answered by
2
Any positive integer n is off the firm 5 m or 5m+1 or 5m+2 or 5m+3 or 5m+4
If n=5/,then
n²=25m²=5(5m²)=5q where q=5m²
If n=5n+1,then
n²=(5m+1)²=5m(5m+2)+1=5q+1 where q=m(5m+2)
If n=5m+2,then
n²=(5m+2)²=5m(5m+4)+4=5q+4 where q=m(5m+4)
If n=5m+3,then
n²=(5m+3)²=5(m²+6m+1)+4=5q+4 where q=5m²+6m+1
If n=5m+4 then
n²≠5(5m²+8m+3)+3=5q+1 where q=5m²+8m+3
Hence n² is of the form 5q or 5q+1 or 5q+4
Similar questions