Math, asked by sdafnan1234, 1 year ago

Show that square of any positive integer is of the form 4m or 4m+11 where m is any integer .

Answers

Answered by snehitha2
5
Euclid division lemma :-
a=bm+r

b=4,
a=4m+r , 0≤r<4

The possible values of r are 0,1,2 and 3.
Let a be any positive integer.
a=1,2,3,4,5....
Square of any positive integer,
(1)²=1=4(0)+1 [r=1}
(2)²=4=4(1)+0 [r=0]
(3)²=9=4(2)+1 [r=1]
(4)²=16=4(4)+0 [r=0]
(5)²=25=4(6)+1 [r=1]

So the square of any positive integer is of the form 4m or 4m+1 for any positive integer m.
Hence proved.

Hope it helps..
Answered by Anonymous
4

Step-by-step explanation:


Note :- Your question have some error, it will be 4m + 1 . And I am taking q as some integer.



Let positive integer a be the any positive integer.

Then, b = 4 .


By division algorithm we know here

0 ≤ r < 4 , So r = 0, 1, 2, 3.


When r = 0


a = 4m


Squaring both side , we get


a² = ( 4m )²


a² = 4 ( 4m​²)


a² = 4q , where q = 4m²


When r = 1


a = 4m + 1


squaring both side , we get


a² = ( 4m + 1)²


a² = 16m² + 1 + 8m


a² = 4 ( 4m² + 2m ) + 1


a² = 4q + 1 , where q = 4m² + 2m


When r = 2


a = 4m + 2


Squaring both hand side , we get


a² = ​( 4m + 2 )²


a² = 16m² + 4 + 16m


a² = 4 ( 4m² + 4m + 1 )


a² = 4q , Where q = ​ 4m² + 4m + 1


When r = 3


a = 4m + 3


Squaring both hand side , we get


a² = ​( 4m + 3)²


a² = 16m² + 9 + 24m


a² = 16m² + 24m ​ + 8 + 1


a² = 4 ( 4m² + 6m + 2) + 1


a² = 4q + 1 , where q = 4m² + 6m + 2



Hence ,Square of any positive integer is in form of 4q or 4q + 1 , where q is any integer.



THANKS



#BeBrainly.


Similar questions