show that square of any positive integer is of the form
7p and 7p +1 and 7p+4 for some integer p ( explaintion plz it's urgent) with explaintion
Answers
- p is some intiger
- show that square of any positive integer is of the form 7p and 7p +1 and 7p+4 for some integer p.
Let b be the divisor and q be the quotient and r = remainder.
»★Let the positive intiger be a
- b = 7
≫By Euclid Division lemma:-
- a = bq + r
- 0≤r<b
✰ a = 7q + r
- Where, r = 0, 1 , 2 ,3 ,4 ,5 ,6
»» a = 7q + 0
- Squaring on both sides
»» a² = 49q²
»» a² = 7(7q²)
»» a² = 7p⠀⠀⠀⠀⠀⠀ [p = 7q²]
»» a = 7q + 1
- Squaring on both sides
»» a² = (7q+1)²
»» a² = 49q² + 1 + 14q
»» a² = 7(7q² +2q)+1
»» a² = 7p+1⠀⠀⠀⠀⠀⠀[p = 7q² + 2q]
»» a = 7q + 2
- Squaring on both sides
»» a² = (7q +2) ²
»» a² = 49q² + 4 + 28q
»» a² = 7(7q² +4q)+4
»» a² = 7p + 4⠀⠀⠀⠀⠀⠀[p = 7q² + 4q]
So,
The square of any positive integer is of the form 7p and 7p +1 and 7p+4 for some integer p
- p is some integer
- show that square of any positive integer is of the form 7p and 7p +1 and 7p+4 for some integer p.
Let b be the divisor and q be the quotient and r = remainder.
»★
b = 7
≫
a = bq + r
0≤r<b
✰ a = 7q + r
, r = 0, 1 , 2 ,3 ,4 ,5 ,6
»» a = 7q + 0
»» a = 7q + r
»» a = 7q
»» a³ = 343³
»» a³ = 7(49q³)
»» a³ = 7m. (/here m is positive integer and m = 49q³)
»» a = 7q + r
»» a = 7q + 1
»» a³ =(7q + 1)³
»» a³ = 343q³ + 1³ + 3(7q)(1)(7q + 1)
»» a³ = 343q³ + 21q(7q + 1) + 1
»» a³ = 343q³ + 147q² + 21q + 1
»» a³ = 7m + 1. (/here m is positive integer and m = 49q³ + 21q² + 3q)
»» a = 7q + r
»» a = 7q + 6
»» a³ = (7q + 6)³
»» a³ = 343q² + 216 + 3(7q)(6)(7q + 6)
»» a³ = 343q³ + 126q(7q + 6) + 216
»» a³ = 7(49q³ + 127q² + 108q) + 216
»» a³ = 7m + 216. (/here m is positive integer and m = 49q³ + 127q² + 108q)
______________________________________