Math, asked by thirumalaengg67, 9 months ago

show that square of any positive integer is of the form
7p and 7p +1 and 7p+4 for some integer p ( explaintion plz it's urgent)​ with explaintion​

Answers

Answered by Anonymous
10

 \large\bf\underline{Given:-}

  • p is some intiger

 \large\bf\underline {To \: find:-}

  • show that square of any positive integer is of the form 7p and 7p +1 and 7p+4 for some integer p.

 \huge\bf\underline{Solution:-}

Let b be the divisor and q be the quotient and r = remainder.

»★Let the positive intiger be a

  • b = 7

≫By Euclid Division lemma:-

  • a = bq + r
  • 0≤r<b

a = 7q + r

  • Where, r = 0, 1 , 2 ,3 ,4 ,5 ,6

 \underbrace{ \bf \: case \: 1st \:  :  - }

»» a = 7q + 0

  • Squaring on both sides

»» a² = 49q²

»» a² = 7(7q²)

»» a² = 7p⠀⠀⠀⠀⠀⠀ [p = 7q²]

 \underbrace{ \bf \: case \: 2nd \:  :  - }

»» a = 7q + 1

  • Squaring on both sides

»» a² = (7q+1)²

»» a² = 49q² + 1 + 14q

»» a² = 7(7q² +2q)+1

»» a² = 7p+1⠀⠀⠀⠀⠀⠀[p = 7q² + 2q]

 \underbrace{ \bf \: case \: 3rd \:  :  - }

»» a = 7q + 2

  • Squaring on both sides

»» a² = (7q +2) ²

»» a² = 49q² + 4 + 28q

»» a² = 7(7q² +4q)+4

»» a² = 7p + 4⠀⠀⠀⠀⠀⠀[p = 7q² + 4q]

So,

The square of any positive integer is of the form 7p and 7p +1 and 7p+4 for some integer p

Answered by silentlover45
1

\large\mathrm\red{Given:-}

  • p is some integer

  • show that square of any positive integer is of the form 7p and 7p +1 and 7p+4 for some integer p.

Let b be the divisor and q be the quotient and r = remainder.

»★\large\mathrm\red{Let \: the \: positive \: intiger \: be \: a}

\impliesb = 7

\large\mathrm\red{By \: Euclid \: Division \: lemma:-}

a = bq + r

0≤r<b

✰ a = 7q + r

\large\mathrm\red{Where}, r = 0, 1 , 2 ,3 ,4 ,5 ,6

»» a = 7q + 0

\large\mathrm\red{1. \: When \: r \: value \: equals \: to \: zero. \: (r = 0)}

»» a = 7q + r

»» a = 7q

\large\mathrm\red{Cube \: both \: side}

»» a³ = 343³

»» a³ = 7(49q³)

»» a³ = 7m. (/here m is positive integer and m = 49q³)

\large\mathrm\red{2. \: If \: value \: of \: r \: is \: equal \: to \: 1 \: (r = 1)}

»» a = 7q + r

»» a = 7q + 1

\large\mathrm\red{Cube \: both \: side}

»» a³ =(7q + 1)³

»» a³ = 343q³ + 1³ + 3(7q)(1)(7q + 1)

»» a³ = 343q³ + 21q(7q + 1) + 1

»» a³ = 343q³ + 147q² + 21q + 1

»» a³ = 7m + 1. (/here m is positive integer and m = 49q³ + 21q² + 3q)

\large\mathrm\red{3. \: If \: r \: value \: equal \: to \: 6 \: (r = 6)}

»» a = 7q + r

»» a = 7q + 6

\large\mathrm\red{Cube \: both \: side}

»» a³ = (7q + 6)³

»» a³ = 343q² + 216 + 3(7q)(6)(7q + 6)

»» a³ = 343q³ + 126q(7q + 6) + 216

»» a³ = 7(49q³ + 127q² + 108q) + 216

»» a³ = 7m + 216. (/here m is positive integer and m = 49q³ + 127q² + 108q)

\large\mathrm{I \: think \: 7m + 6 \: is \: not \: a \: cube \: of \: any \: position \: integer.</p><p>}

______________________________________

Similar questions
Science, 9 months ago