show that square of any positive integer is of the form 8q+1 for any integer q
Answers
Answered by
2
By Euclid's division lemma, we have,
a=bq+r(where 0<=r<b)
so assuming the value of b as 8
a=8q+r(r=0, 1, 2, 3, 4, 5, 6, 7)
if r=0
a=8q
a^2=64q^2=8(8q^2)=8q
similarly it can be done for all values..
a=bq+r(where 0<=r<b)
so assuming the value of b as 8
a=8q+r(r=0, 1, 2, 3, 4, 5, 6, 7)
if r=0
a=8q
a^2=64q^2=8(8q^2)=8q
similarly it can be done for all values..
abhijithdethp63g10:
thanks
Answered by
0
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2,3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
8q
case 2.
r=1
a=bq+r
8q+1
case3.
r=2
a=bq+r
8q+2
case 4.
r=3
a=bq+r
8q+3
case 5.
r=4
a=bq+r
8q+4
case 6.
r=5
a=bq+r
8q+5
case7.
r=6
a=bq+r
8q+6
case 8
r=7
a=bq+r
8q+7
Similar questions