Show that square of any positive odd integer is of the form 8q+1 for some integers q
Answers
Answered by
4
Heya User!
We can write any odd positive integer 'a' in the form ---->
a≡ {1,3,5,7} (mod 8)
For a≡ 1(mod8) --> a² ≡ 1²(mod8) ≡ 1(mod8)
For a≡ 3(mod8) --> a² ≡ 3²(mod8) ≡ 9(mod8) ≡ 1(mod8)
For a≡ 5(mod8) --> a² ≡ 5²(mod8) ≡ 24+1(mod8) ≡ 1(mod8)
For a≡ 7(mod8) --> a² ≡ 7²(mod8) ≡ 48+1(mod8) ≡ 1(mod8)
.'. We can write, square of any odd +ve Z is of the form 8q + 1 for some integer q....
Note:- a≡{1,3,5,7}(mod 8) => a = 8q + r || r∈(1,3,5,7)
We can write any odd positive integer 'a' in the form ---->
a≡ {1,3,5,7} (mod 8)
For a≡ 1(mod8) --> a² ≡ 1²(mod8) ≡ 1(mod8)
For a≡ 3(mod8) --> a² ≡ 3²(mod8) ≡ 9(mod8) ≡ 1(mod8)
For a≡ 5(mod8) --> a² ≡ 5²(mod8) ≡ 24+1(mod8) ≡ 1(mod8)
For a≡ 7(mod8) --> a² ≡ 7²(mod8) ≡ 48+1(mod8) ≡ 1(mod8)
.'. We can write, square of any odd +ve Z is of the form 8q + 1 for some integer q....
Note:- a≡{1,3,5,7}(mod 8) => a = 8q + r || r∈(1,3,5,7)
Answered by
6
let a be any positive integer
then
b=8
0≤r<b
0≤r<8
r=0,1,2,3,4,5,6,7
case 1.
r=0
a=bq+r
8q+0
8q
case 2.
r=1
a=bq+r
8q+1
case3.
r=2
a=bq+r
8q+2
case 4.
r=3
a=bq+r
8q+3
case 5.
r=4
a=bq+r
8q+4
case 6.
r=5
a=bq+r
8q+5
case7.
r=6
a=bq+r
8q+6
case 8
r=7
a=bq+r
8q+7
Similar questions