Math, asked by Samon1, 1 year ago

Show that square of any positive odd integer is of the form 8q+1 for some integers q

Answers

Answered by Anonymous
4
Heya User!

We can write any odd positive integer 'a' in the form ---->
  a {1,3,5,7} (mod 8)

For a
1(mod8) --> a² ≡ 1²(mod8) ≡ 1(mod8)
For a 3(mod8) --> a² ≡ 3²(mod8) ≡ 9(mod8) ≡ 1(mod8)
For a 5(mod8) --> a² ≡ 5²(mod8) ≡ 24+1(mod8) ≡ 1(mod8)
For a 7(mod8) --> a² ≡ 7²(mod8) ≡ 48+1(mod8) ≡ 1(mod8)

.'. We can write, square of any odd +ve Z is of the form 8q + 1 for some integer q....

Note:- a{1,3,5,7}(mod 8) => a = 8q + r || r(1,3,5,7)
Answered by fanbruhh
6
 \huge \bf{ \red{hey}}

 \huge{ \mathfrak{here \: is \: answer}}

let a be any positive integer

then

b=8

0≤r<b

0≤r<8

r=0,1,2,3,4,5,6,7

case 1.

r=0

a=bq+r

8q+0

8q

case 2.
r=1
a=bq+r

8q+1

case3.

r=2

a=bq+r

8q+2

case 4.

r=3

a=bq+r

8q+3

case 5.

r=4

a=bq+r

8q+4

case 6.

r=5

a=bq+r

8q+5

case7.

r=6

a=bq+r

8q+6

case 8

r=7

a=bq+r

8q+7

 \huge \boxed{ \boxed{ \pink{hope \: it \: helps}}}

 \huge{ \green{thanks}}
Similar questions