Math, asked by Anonymous, 11 months ago

show that square of odd positive integer is of the Form 8m + 1 for some whole number m ​

Answers

Answered by Anonymous
29

 \huge \mathfrak \red{answer}

_____________________________

Question:✥

show that square of odd positive integer is of the Form 8m + 1 for some whole number m

step to step explanation:❖

  • let 'a' is any positive integer
  • then b=8

using euclid division lemma

  • 0 ≤ r < b then
  • 0 ≤ r < 8 .

then positive eithere are 0,1,2,3,4,5,6,7

from the question given odd positive integer

so it's will be 1,3,5,7

____________________________

 \sf \underline \blue{case1}

 =  \rm{r = 1}

 =  \rm{a = bm + r}

  = \rm{(8q + 1) }^{2}

 =  \rm{64 {m}^{2} + 16m + 1}

 \rm{= 8( 8 {m}^{2} + 2m ) + 1}

 =  \rm{8q + 1 . [ Where \:  q = 8 {m}^{2}  + 2m ]}

___________________________

 \sf \underline \blue{case2}

 =  \rm{r = 3}

 \rm{a = bq + r}

  \rm{= (8q +3) }^{3}

 \rm{= 64 {m}^{2} + 48m + 9 = 64 {m}^{2}  + 48m + 8 + 1}

 \rm{= 8( 8 {m}^{2} + 6m + 1 ) + 1}

  = \rm{8q + 1 . [ Where \:  q = 8 {m}^{2}  + 6m + 1 ]}

_________________________

 \sf \underline \blue{case3}

 \rm{r = 5}

 \rm{a = (8q + 5) ^{2} }

 \rm{= 64 {m}^{2}  + 80m + 25 = 64 {m}^{2}  + 80m + 24 + 1}

 \rm{= 8( 8 {m}^{2} + 10m + 3 ) + 1}

 \rm{= 8q + 1 . [ Where \:  q = 8 {m}^{2} + 10m + 3}

____________________________

 \sf \underline \blue{case4}

 \rm{r = 7}

 \rm{a = ( 8q + 7)^{2} }

 \rm{= 64 {m}^{2}  + 112m + 49 = 64 {m}^{2}  + 112m + 48 + 1}

 \rm{= 8( 8 {m}^{2} + 14m + 6 ) + 1}

 \rm{= 8q + 1 . [ Where q = 8 {m}^{2} + 14m + 6 ] }

therefore,the square of any odd positive integer is of the form 8q + 1 .

I hope it's help uu

mark it as brainlist

Answered by sojalverma16
1

Answer:

hiii

hello

are you crazy

Similar questions