show that square of positive integer can't be of the form 5m+2 or 5m+3
Answers
Step-by-step explanation:
==> a = 5( 5q² + 8q + 3 ) + 1 . °• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] . → Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3
Step-by-step explanation:
Let a be any positive integer
By Euclid's division lemma
a=bm+r
a=5m+r (when b=5)
So, r can be 0,1,2,3,4
Case 1:
∴a=5m (when r=0)
a²=25m²
a²=5(5m² )=5q
where q=5m²
Case 2:
when r=1
a=5m+1
a² =(5m+1)²=25m²+10m+1
a² =5(5m² +2m)+1
=5q+1 where q=5m²+2m
Case 3:
a=5m+2
a²=25m²+20m+4
a²=5(5m²+4m)+4
5q+4
where q=5m²+4m
Case 4:
a=5m+3
a²=25m²+30m+9=25m²+30m+5+4
=5(5m²+6m+1)+4
=5q+4
where q=5m²+6m+1
Case 5:
a=5m+4
a² =25m²+40m+16=25m²+40m+15+1
=5(5m²+8m+3)+1
=5q+1 where q=5m²+8m+3
From these cases, we see that square of any positive no can't be of the form 5q+2,5q+3.