Math, asked by chauhanavnish808, 9 months ago

show that square square of any positive integer of the form 3m or 3m+1 where m is an integer​

Answers

Answered by arshadkhan77097
6

given:

let \: a \: be \: any \: positive \: integer \\  \\ using \: euclids \: lemma \:  =  a = bq + r \\  \\ here \: b = 3 \: then \: possible \: remainders \: are \:  = 0.1.2 \\  \\ now \: a \: can \: be \: 3m...3m + 1 ....3m + 2 \\  \ \\  \\ s.o.b.s \\  \\  {a}^{2}  =  {3m }^{2}  \\  {a}^{2}  = 9 {m}^{2}  \\  {a}^{2}  = 3( {3m}^{2} ) \\  \\  {a}^{2}  = 3k \: where \: k = 3 {m}^{2}

 {a}^{2}  =  {3m + 1}^{2}  \\  \\  {a}^{2}  =  {3m}^{2}  + 2 \times 3m \times 1 + 1 \\  \\  {a}^{2}  =  {9m}^{2}  + 6m + 1 \\  \\  {a}^{2}  = 3( 3{m}^{2}  + 2m) + 1 \\  \\  {a }^{2}  = 3k + 1 \:  \: where \: k \:  = 3 {m}^{2}  + 2m

please mark me as Brainliest

Similar questions