Math, asked by greta75, 1 year ago

show that tan[1/2sin inverse(3/4)]=4-√7/3​

Answers

Answered by naushad55
14

Answer:

I think this method is most simple for you.

Attachments:
Answered by sidb15
4

 \huge \bold \color{lime}{ \underline{ \color{teal} \underline \mathbb{ANSWER }}}

To prove :-

 \tan( \frac{1}{2}  { \sin}^{ - 1}  \frac{3}{4} )  =  \frac{4 -  \sqrt{7} }{3}

Proof :-

let \:  \frac{1}{2}  { \sin }^{ - 1}  \frac{3}{4}  = x

2x =  { \sin }^{ - 1}  \frac{3}{4}

 \sin (2x)  =  \frac{3}{4}

 \frac{2 \tan(x) }{1 +  { \tan }^{2} x}  =  \frac{3}{4}

8 \tan(x)  = 3 + 3 { \tan }^{2} x

3 { \tan }^{2} x - 8 \tan(x)  + 3 = 0

 \tan(x)  =  \frac{8 \pm \:  \sqrt{64 - 36} }{6}

 \tan(x)  =  \frac{8 \pm \:  \sqrt{28} }{6}

 \tan(x)  =  \frac{8 \pm \: 2 \sqrt{7} }{6}

 \tan(x)  =  \frac{4 \pm \:  \sqrt{7} }{3}

 -  \frac{\pi}{2}  \leqslant  { \sin }^{ - 1}  \frac{3}{4}  \leqslant  \frac{\pi}{2}

 -  \frac{\pi}{4}  \leqslant  \frac{1}{2}  { \sin}^{ - 1}  \frac{3}{4}  \leqslant  \frac{\pi}{4}

 \small \tan( -  \frac{\pi}{4} )  \leqslant  \tan( \frac{1}{2}  { \sin}^{ - 1} \frac{3}{4}  )  \leqslant  \tan( \frac{\pi}{4} )

 - 1 \leqslant  \tan( \frac{1}{2}  { \sin }^{ - 1}  \frac{3}{4} )  \leqslant 1

 \small \bold{ \therefore \:  \tan(x)  = \tan( \frac{1}{2}  { \sin }^{ - 1}  \frac{3}{4} ) =   \huge\color{green} \frac{4 -  \sqrt{7} }{3} }

 \mathcal{HOPE \: IT \: HELPS }

Similar questions