Show that tan 2A/(1+Sec2A) = tan A
Answers
Answered by
8
Answer:
tan A = sin A /cos A
tan A = 2 sin A cos A /2 cos ^2 A
tan A = sin 2 A /cos ^2 A + cos ^2 A
tan A = sin 2 A /1 − sin ^2 A + cos ^2 A
tan A = sin 2 A/ 1 + cos 2 A
tan A =( sin 2 A ) / cos 2 A /( 1 + cos 2 A ) / cos 2 A
tan A = tan 2 A/ 1 + sec 2 A
FOLLOW ME
Ctrl+Z....
Step-by-step explanation:
Answered by
0
Answer:
We know that,
tan2A=2tanA/1-tan^2A
cos2A=1-tan^2A/1+tan^2A
secA=1/cosA
A/Q:
{2tanA/(1-tan^2A)}/[1+1+tan^2A/1-tan^2A}]
2tanA/(1-tan^2A)}/[1+1+tan^2A/1-tan^2A}]{2tanA/(1-tan^2A)}/{1-tan^2A+1+tan^2A/(1-tan^2A)}
2tanA/2
tanA
Hence proved
Similar questions