show that tan(45+A) + tan(45-A)/ tan(45+A) - tan(45-A)= cosec2A
Answers
Answer:
Step-by-step explanation:
Formula used:
sin(A+B) = sinA cosB + cosA sinB
sin(A-B) = sinA cosB - cosA sinB
Now,
Answer:
Step-by-step explanation:
show that tan(45+A) + tan(45-A)/ tan(45+A) - tan(45-A)= cosec2A
Numerator = tan(45+A) + tan(45-A)
Denominator = tan(45+A) - tan(45-A)
Tan(A + B) = (TanA + TanB)/(1 - TanATanB)
Tan(A - B) = (TanA - TanB)/(1 + TanATanB)
tan(45+A) = (1 + TanA)/(1 - TanA)
tan(45-A) = (1 - TanA)/(1 + TanA)
Numerator =
(1 + TanA)/(1 - TanA) + (1 - TanA)/(1 + TanA)
= ((1 + TanA)² + (1 -TanA)²)/(1 - Tan²A)
=( 1 + Tan²A + 2TanA + 1 + Tan²A - 2TanA) /(1 - Tan²A)
= 2(1 + Tan²A) /(1 - Tan²A)
Similarly denominator
(1 + TanA)/(1 - TanA) - (1 - TanA)/(1 + TanA)
= ((1 + TanA)² - (1 -TanA)²)/(1 - Tan²A)
=( 1 + Tan²A + 2TanA - 1 - Tan²A + 2TanA) /(1 - Tan²A)
= 4TanA /(1 - Tan²A)
LHS =
Numerator/ Denominator = 2(1 + Tan²A)/4TanA
1 + Tan²A = Sec²A
= 2Sec²A/4TanA
= 1/2Cos²ATanA
= 1/2CosACosATanA
= 1/2CosASinA
= 1/Sin2A
= Cosec2A
= RHS
QED