Math, asked by manojrekulapally171, 11 months ago

show that tan 48 degrees tan 16 degrees tan 42 degrees tan 74 degrees = 1​

Answers

Answered by Anonymous
9

To Prove:

 \tan(48)  \tan(16)  \tan(42)  \tan(74)  = 1

Step-by-step explanation:

We have,

L.H.S

 =  \tan(48)  \tan(16)  \tan(42)  \tan(74)  \\  \\  =  (\tan48  \times  \tan42)( \tan16  \times \tan74) \\  \\  = ( \tan48 \times  \cot(90 - 42))( \tan16 \times  \cot(90 - 74) )  \\  \\  = ( \tan48 \times  \cot48)   ( \tan16 \times  \cot16)  \\  \\  = 1 \times 1 \\  \\  = 1

= R.H.S

°.° L.H.S = R.H.S

Hence, Proved.

Concept Map:-

  •  \tan \alpha   =  \cot(90 -  \alpha )
  •  \tan \alpha   \times  \cot \alpha  = 1
Answered by Anonymous
15

R.T.P :-

tan(48) tan(16) tan(42) tan(74) = 1

NOTE :-

  • tan(90-a) = cot a
  • tan a × cot a = 1

PROOF :-

Consider tan(48) tan(16) tan(42) tan(74) [ L.H.S]

=> tan (48) . tan (90-74) . tan (90-48) . tan(74)

=> tan (48) . cot(74). cot(48). tan(74)

Grouping the terms,

=> { tan (48). cot(48) } × { tan (74) .cot(74)}

=> 1 × 1

= 1

= R.H.S

THEREFORE L.H.S = R.H.S

Similar questions