Show that tan 7
°
X tan 23°X tan 60°X tan 67°X tan 83° = √3
Answers
Answered by
2
evaluate,
tan7
∘
tan23
∘
tan60
∘
tan67
∘
tan83
∘
We know that,
tan(90−θ)=cotθ and cotθ=
tanθ
1
tan7
∘
=tan(90
∘
−83
∘
)=cot83
∘
tan23
∘
=tan(90
∘
−67
∘
)=cot67
∘
∴tan7
∘
tan23
∘
tan60
∘
tan67
∘
tan83
∘
=cot83
∘
cot67
∘
tan60
∘
tan67
∘
tan83
∘
=
tan83
∘
1
tan67
∘
1
tan60
∘
tan67
∘
tan83
∘
=
tan83
∘
tan67
∘
tan60
∘
tan67
∘
tan83
∘
=tan60
∘
=underroot 3
tan7
∘
tan23
∘
tan60
∘
tan67
∘
tan83
∘
We know that,
tan(90−θ)=cotθ and cotθ=
tanθ
1
tan7
∘
=tan(90
∘
−83
∘
)=cot83
∘
tan23
∘
=tan(90
∘
−67
∘
)=cot67
∘
∴tan7
∘
tan23
∘
tan60
∘
tan67
∘
tan83
∘
=cot83
∘
cot67
∘
tan60
∘
tan67
∘
tan83
∘
=
tan83
∘
1
tan67
∘
1
tan60
∘
tan67
∘
tan83
∘
=
tan83
∘
tan67
∘
tan60
∘
tan67
∘
tan83
∘
=tan60
∘
=underroot 3
Similar questions