Math, asked by manishkodipyakal, 18 days ago

Show that tan 75 + cot 75 = 4.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:tan75\degree  + cot75\degree

Consider

\rm :\longmapsto\:tan75\degree

\rm \:  =  \: tan(45\degree  + 30\degree )

\rm \:  =  \: \dfrac{tan45\degree  + tan30\degree }{1 - tan45\degree  \times tan30\degree }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{3} } }{1 - 1 \times \dfrac{1}{ \sqrt{3} } }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{3} } }{1 - \dfrac{1}{ \sqrt{3} } }

\rm \:  =  \: \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1} \times \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

\rm \:  =  \: \dfrac{ {( \sqrt{3}  + 1)}^{2} }{ {( \sqrt{3}) }^{2} -  {(1)}^{2}  }

\rm \:  =  \: \dfrac{3 + 1 + 2 \sqrt{3} }{3 - 1}

\rm \:  =  \: \dfrac{4+ 2 \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2(2+  \sqrt{3} )}{2}

\rm \:  =  \: 2 +  \sqrt{3}

\rm\implies \:\boxed{\tt{ tan75\degree  = 2 +  \sqrt{3} \: }}

Now,

\rm :\longmapsto\:cot75\degree

\rm \:  =  \: \dfrac{1}{tan75\degree }

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2} }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \: 2 -  \sqrt{3}

\bf\implies \:\boxed{\tt{ cot75\degree  = 2 -  \sqrt{3} \: }}

Now, Consider

\rm :\longmapsto\:tan75\degree  + cot75\degree

\rm \:  =  \: 2 +  \sqrt{3} + 2 -  \sqrt{3}

\rm \:  =  \: 4

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  + cot75\degree  = 4 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Alternative Method

\rm :\longmapsto\:tan75\degree  + cot75\degree

\rm \:  =  \: tan75\degree  +  \dfrac{1}{tan75\degree }

\rm \:  =  \: \dfrac{ {tan}^{2}75\degree  +  1}{tan75\degree }

\rm \:  =  \: \dfrac{1}{\dfrac{tan75\degree }{1 +  {tan}^{2} 75\degree } }

\rm \:  =  \: \dfrac{2}{\dfrac{2tan75\degree }{1 +  {tan}^{2} 75\degree } }

We know,

\rm :\longmapsto\:\boxed{\tt{  \frac{2tanx}{1 +  {tan}^{2} x}  = sin2x}}

\rm \:  =  \: \dfrac{2}{sin150\degree }

\rm \:  =  \: \dfrac{2}{sin(180\degree  - 30\degree )}

\rm \:  =  \: \dfrac{2}{sin30\degree }

\rm \:  =  \: 2 \times 2

\rm \:  =  \: 4

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  + cot75\degree  = 4 \: }}

Similar questions