Math, asked by anandbabu86121833, 2 months ago

show that tan square teeta + tan square teeta = sec square teeta - sec square teeta​

Answers

Answered by hemanthvadapalli123
1

\bold\pink{Correct} \bold\pink{Question:-}

Show that

 { \tan }^{4}   \theta \:  +  { \tan }^{2}  \theta \:  =  { \sec }^{4}  \theta \:  -  { \sec}^{2}   \theta

\huge\bold{Solution:-}

Given,

RHS =

 { \sec}^{4} \theta -  { \sec}^{2} \theta

 { \sec}^{2}  \theta \:  \: ( { \sec }^{2}  \theta  -  1)

By formula:-

 { \sec}^{2}  \theta \:  = 1 +  { \tan}^{2}  \theta

1 +  { \tan }^{2}  \theta(1 +  \tan^{2}  \theta - 1)

1 +  { \tan }^{2}  \theta( { \tan}^{2}   \theta)

 =  >  { \tan}^{4}  \theta  +  { \tan }^{2}  \theta

So,

LHS = RHS

Hence proved

Similar questions