show that (tan tetha +sec tetha)^2+(tan tetha -sec tetha)^2=2(1+sin^2 tetha/1-sin^2 tetha)
Answers
To prove--->
(tanθ + Secθ)² + (tanθ - Secθ)²
= 2 ( 1 + Sin²θ ) / ( 1 - Sin²θ )
Proof--->
LHS= (tanθ + Secθ )² + ( tanθ - Secθ )²
We have two identity as follows
( a + b )² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab , applying these identities here , we get
= tan²θ + Sec²θ + 2tanθ Secθ + tan²θ + Sec²θ
- 2 tanθ Secθ
- 2tanθSecθ and 2tanθ Secθ cancel out each other
= 2 tan²θ + 2 Sec²θ
Taking 2 common , we get,
= 2 ( tan²θ + Sec²θ )
We know that,
tanθ = Sinθ / Cosθ , Secθ = 1 / Cosθ , applying it here , we get,
= 2 { ( Sin²θ / Cos²θ ) + ( 1 / Cos²θ ) }
Taking Cos²θ as LCM, we get,
= 2 { ( Sin²θ + 1 ) / Cos²θ }
We know that ,
Cos²θ =1 - Sin²θ , applying it we get,
= 2 ( 1 + Sin²θ ) / ( 1 - Sin²θ ) = RHS