Math, asked by varshajainj, 2 months ago

Show that, tan^theta + cot^theta + 2 = sec^thata ×cosec^theta
plz answer fast​

Answers

Answered by AestheticSky
17

\bigstar\large\underline{\rm{\sf Correct \:Question}}

Show that:-

\sf\tan\theta+\cot\theta+2=\sec\theta.\cosec\theta\red{+2}

\bigstar\large\underline{\rm{\sf Required\:Solution}}

:\implies\sf \tan\theta+\cot\theta+2

:\implies\sf \dfrac{\sin\theta}{\cos\theta} +\dfrac{\cos\theta}{\sin\theta}+2

:\implies\sf \dfrac{\sin^{2} \theta+\cos^{2} \theta}{\sin\theta.\cos\theta}+2

As we know that:-

\underline{\boxed{\bf\sin^{2}\theta+\cos^{2} \theta=1  }}

:\implies\sf  \dfrac{1}{\sin\theta.\cos\theta} +2

:\implies\sf\red{\sec\theta.\cosec\theta+2}

ADDITIONAL KNOWLEDGE:-

Important Identities:-

  • sec²∅ - tan²∅ = 1
  • cosec²∅ - cot²∅ = 1

Reciprocal of ratios:-

  • sin∅ = 1/cosec∅
  • cosec∅ = 1/sin∅
  • cos∅ = 1/sec∅
  • sec∅ = 1/cos∅
  • tan∅ = 1/cot∅
  • cot∅ = 1/tan∅

Ratios of Complemantary Angles:-

  • sin∅ = cos(90 - ∅)
  • cos∅ = sin(90 - ∅)
  • tan∅ = cot(90 - ∅)
  • cot∅ = tan(90 - ∅)
  • sec∅ = cosec(90 - ∅)
  • cosec∅ = sec(90 = ∅)

______________________________________

I hope it's beneficial :D

Similar questions