show that tan theta + cot theta is equal to co secant theta into secant theta
Answers
Answered by
5
To prove:
cot \theta +tan \theta =cosec \theta \times sec \theta
Answer:
cot\theta + tan\theta = cosec \theta \times sec \theta
LHS is
Cot \theta + tan \theta= \frac {cos \theta }{sin \theta }+ \frac {sin \theta }{ cos \theta }
= \frac {cos^{2} \theta + sin^{2} \theta}{ sin \theta \times cos \theta}
Therefore cos^{2} \theta + sin^{2} \theta = 1
= \frac {1}{ sin \theta \times cos \theta}
= \frac {1}{ sin \theta} \times \frac {1}{ cos \theta}
Therefore,
cot \theta +tan \theta =cosec \theta \times sec \theta
Hence proved.
Similar questions