Math, asked by wwwtshitz6557, 10 months ago

Show that (tan theta + sec theta-1)/(tan theta +sec theta+1)=(1=sin theta)/ cos theta

Answers

Answered by kumares3274
1

Answer:

hope it helps

plz mark me the brainliest.

Attachments:
Answered by vijay876751ac2
3

Given:

Show that

\Large\sf\  \frac{tan \: \theta \:  +  \: sec \: \theta \:  -  \: 1}{tan \:  \theta \:  -  \: sec \: \theta \:  +  \: 1} \:  =  \:  \frac{1 \:  +  \: sin \:  \theta}{cos \:  \theta}

Solution:

\sf\ Given  =  \Large\sf\: \: \large\sf\  \frac{tan \: \theta \:  +  \: sec \: \theta \:  -  \: 1}{tan \:  \theta \:  -  \: sec \: \theta \:  +  \: 1} \:

\Large\sf\   = \:  \:  \frac{( \: tan \:  \theta \:  +  \: sec \:  \theta  \: ) \:  -  \: ( \: sec \: ^{2} \: \theta \:  -  \:  tan^{2} \:  \theta \: )}{tan \:  \theta \:  -  \: sec \:  \theta \:  +  \: 1 \:  \: }

\Large\sf\   = \:  \:  \frac{( \: tan \:  \theta \:  +  \: sec \:  \theta  \: ) \:  -  \:  \big(( \: sec \: \theta \:   +   \:  tan \:  \theta \: ) \: (sec \:  \theta \:  -  \: tan \:  \theta)\big)}{tan \:  \theta \:  -  \: sec \:  \theta \:  +  \: 1 \:  \: }

\Large\sf\ \:  =  \:  \frac{tan \:  \theta \:  +  \: sec \: \theta \: (\cancel{\: 1 \:  -  \: sec \:  \theta \:  + \: cos \:  \theta \: )}}{\cancel{( \: 1 \:  -  \: sec \:  \theta \:  +  \: tan \:  \theta}}

\sf\ \:  {\Large{\sf{ \:  =  \: }}}  \: tan \:  \theta \:  +  \: sec \:  \theta

\Large\sf\ \:  =  \:  \frac{sin \:  \theta}{cos \:  \theta} \:  +  \:  \frac{1}{cos \:  \theta}

{\large{\sf{\red{ \:  \:  \:   = }}}} \:  \: \: {\large{\boxed{\sf{\red{ \frac{sin \:  \theta \:  +  \: 1}{cos \:  \theta}}}}}}

\small\

Hence, Solved!

Similar questions