Math, asked by girikumar77pbicv6, 1 year ago

show that tan2A +tan4A=sec4A-sec2A

Answers

Answered by Siddharta7
101

tan²A+tan⁴A

tan²A(1+tan²A)

(sec²A-1)(1+tan²A). (1+tan²A=sec²A)

(sec²A-1)sec²A

sec⁴A-sec²A  

Answered by mysticd
61

Answer:

 \red{  tan^{2} A + tan^{4} A} \green { =sec^{4} A - sec^{2} A}

Step-by-step explanation:

 LHS = tan^{2} A + tan^{4} A

 = tan^{2} A ( 1 + tan^{2} A ) \\= tan^{2} A \times sec^{2} A

 \boxed { \pink { 1 + tan^{2} A = sec^{2} A }}

 = ( sec^{2} A - 1 ) \times sec^{2} A

 = sec^{4} A - sec^{2} A

 = RHS

Therefore.,

 \red{  tan^{2} A + tan^{4} A} \green { =sec^{4} A - sec^{2} A}

•••♪

Similar questions