Show that
tan3x tan2x Tanx=tan3x-tan2x-tanx
Answers
Answered by
10
━━━━━━━━━━━━━━━━━━━━
✤ Required Answer:
✒ To show:
- tan3x tan2x tanx = tan3x - tan2x - tanx
━━━━━━━━━━━━━━━━━━━━
✤ How to solve?
⚡First let's know some points and
Some important formulae of Trigonometry:
- sin (A + B) = sinAcosB + cosAsinB
- sin (A – B) = sinAcosB – cosAsinB
- cos(A + B) = cosAsinB – sinAcosB
- cos(A – B) = cosAsinB + sinAcosB
- tan (A + B) = tan A + tan B/(1 – tanAtanB)
- tan (A – B) = tan A – tan B/(1 + tanAtanB)
☃️ So, let's solve this question....
━━━━━━━━━━━━━━━━━━━━
✤ Solution:
We can write,
➝ 3x = x + 2x
➝ tan 3x = tan (x + 2x)
By using formula:
tan (A + B) = tan A + tan B/(1 – tanAtanB)
➝ tan 3x = tan (x + 2x)
➝ tan 3x = tan x + tan 2x / 1 - tanx tan2x
Cross multiplying,
➝ tan 3x(1 - tanx tan2x) = tan x + tan 2x
Expanding the parentheses,
➝ tan 3x - tanx. tan2x. tan3x = tan x + tan 2x
➝ tan 3x - tan2x - tanx = tan x. tan 2x. tan 3x
➝ tan 3x. tan2x. tan x = tan 3x - tan 2x - tan x
☸ Hence, solved !!
━━━━━━━━━━━━━━━━━━━━
Answered by
77
Similar questions