Math, asked by akhan848149, 8 months ago

Show that
tan3x tan2x Tanx=tan3x-tan2x-tanx​

Answers

Answered by Cynefin
10

━━━━━━━━━━━━━━━━━━━━

Required Answer:

✒ To show:

  • tan3x tan2x tanx = tan3x - tan2x - tanx

━━━━━━━━━━━━━━━━━━━━

How to solve?

⚡First let's know some points and

Some important formulae of Trigonometry:

  1. sin (A + B) = sinAcosB + cosAsinB
  2. sin (A – B) = sinAcosB – cosAsinB
  3. cos(A + B) = cosAsinB – sinAcosB
  4. cos(A – B) = cosAsinB + sinAcosB
  5. tan (A + B) = tan A + tan B/(1 – tanAtanB)
  6. tan (A – B) = tan A – tan B/(1 + tanAtanB)

☃️ So, let's solve this question....

━━━━━━━━━━━━━━━━━━━━

Solution:

 \large{ \bf{ \purple{Proof:}}}

We can write,

➝ 3x = x + 2x

➝ tan 3x = tan (x + 2x)

By using formula:

tan (A + B) = tan A + tan B/(1 – tanAtanB)

➝ tan 3x = tan (x + 2x)

➝ tan 3x = tan x + tan 2x / 1 - tanx tan2x

Cross multiplying,

➝ tan 3x(1 - tanx tan2x) = tan x + tan 2x

Expanding the parentheses,

➝ tan 3x - tanx. tan2x. tan3x = tan x + tan 2x

➝ tan 3x - tan2x - tanx = tan x. tan 2x. tan 3x

➝ tan 3x. tan2x. tan x = tan 3x - tan 2x - tan x

☸ Hence, solved !!

━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
77

 \tt \: 3x = 2x + x \\   \\   \\  \leadsto \tt tan \: 3x = tan \bigg(x + 2x \bigg) \\  \\ \\   \tt \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \leadsto\: \frac{tan x \:  \: tan2x \:  \:}{1 - tanx - tan2x}  \\  \\ \\   \leadsto \tt \underbrace{ tan  \: 3x -   \:  \: tan \: 2x \:  \: tan \: x} = tan \: x + tan \: 2x  \\ \\  \\  \\   \leadsto \tt tan \:3x \:  \: tan \: 2x \: tan \: x = tan \: 3x - tan \: 2x - tan \: x \\  \\
Similar questions