show that (tan45+A)+(tan45-A)/(tan45+A)-(tan45-A)=Cosec2A
Answers
Answered by
1
tan(45+A)+tan(45-A) =
= [tan(45)+tanA] / [1-tan45.tanA] + [tan(45)-tanA] / [1+tan45.tanA] =
= (1+tanA) / (1-tanA) + (1-tanA) / (1 + tanA) =
= (1+tanA)^2 / (1-tan^2A) + (1-tanA)^2 / (1 - tan^2A) =
= [(1+tanA)^2 + (1-tanA)^2] / (1-tan^2A) = 2(1+tan^2A) / (1-tan^2A) =
= 2sec2A
hope it helps you
please mark it brainliest answer
= [tan(45)+tanA] / [1-tan45.tanA] + [tan(45)-tanA] / [1+tan45.tanA] =
= (1+tanA) / (1-tanA) + (1-tanA) / (1 + tanA) =
= (1+tanA)^2 / (1-tan^2A) + (1-tanA)^2 / (1 - tan^2A) =
= [(1+tanA)^2 + (1-tanA)^2] / (1-tan^2A) = 2(1+tan^2A) / (1-tan^2A) =
= 2sec2A
hope it helps you
please mark it brainliest answer
nainsaheb:
wrong h
Similar questions