Show that tan48°tan16°tan42°tan74° =1
Answers
Answered by
5
tan48 × tan42 × tan16 × tan 74 = 1
L.H.S.
= {tan48tan42} × {tan16tan74}
= {tan(90-42)tan42} × {tan(90-74)tan74}
= {cot42tan42} × {cot74tan74}
= 1×1
= 1
∴ 1 = 1
∴L.HS. = R.H.S.
Hence proved.
Answered by
13
LHS
=> tan(48).tan(16).tan(42).tan(74)
=> tan48.tan16.tan(90-48).tan(90-16)
________________
Now, using trigonometric identity :-
=> tan(90-α) = cotα
_______________
then,
=> tan48.tan16.cot48.cot16
=> tan48×cot48×tan16×cot16
______________
Again using trigonometric identity :-
_______________
we get,
=> LHS
_________[PROVED]
=> tan(48).tan(16).tan(42).tan(74)
=> tan48.tan16.tan(90-48).tan(90-16)
________________
Now, using trigonometric identity :-
=> tan(90-α) = cotα
_______________
then,
=> tan48.tan16.cot48.cot16
=> tan48×cot48×tan16×cot16
______________
Again using trigonometric identity :-
_______________
we get,
=> LHS
_________[PROVED]
Similar questions