Math, asked by srinathgoli22, 1 year ago

Show that tan48°tan16°tan42°tan74° =1

Answers

Answered by saurabhyadavanpcfojf
5

tan48 × tan42 × tan16 × tan 74 = 1

L.H.S.

= {tan48tan42} × {tan16tan74}

= {tan(90-42)tan42} × {tan(90-74)tan74}

= {cot42tan42} × {cot74tan74}

= 1×1

= 1

∴ 1 = 1

∴L.HS. = R.H.S.

Hence proved.

Answered by Deepsbhargav
13
LHS

=> tan(48).tan(16).tan(42).tan(74)

=> tan48.tan16.tan(90-48).tan(90-16)

________________

Now, using trigonometric identity :-

=> tan(90-α) = cotα

_______________

then,

=> tan48.tan16.cot48.cot16

=> tan48×cot48×tan16×cot16

______________

Again using trigonometric identity :-

 =  > tan \alpha  =  \frac{1}{cot \alpha }
_______________

we get,

 =  >  \frac{1}{cot48}  \times cot48  \times  \frac{1}{cot16}  \times cot16 \\  \\  =  > 1 \times 1 = 1

=> LHS
_________[PROVED]
Similar questions