show that tan⁴teta +tan² teta= sec⁴teta- sec² teta
Answers
Answered by
5
EXPLANATION.
⇒ tan⁴θ + tan²θ = sec⁴θ - sec²θ.
As we know that,
We can write equation as,
From R.H.S.
⇒ sec⁴θ - sec²θ.
⇒ sec²θ(sec²θ - 1).
As we know that,
Formula of :
⇒ 1 + tan²θ = sec²θ.
Put the value in the equation, we get.
⇒ (1 + tan²θ)(1 + tan²θ - 1).
⇒ (1 + tan²θ)(tan²θ).
⇒ tan²θ + tan⁴θ
Hence proved.
Method = 2.
From L.H.S.
⇒ tan⁴θ + tan²θ.
As we know that,
We can write equation as,
⇒ tan²θ(tan²θ + 1).
As we know that,
Formula of :
⇒ 1 + tan²θ = sec²θ.
⇒ tan²θ = sec²θ - 1.
Using this formula in equation, we get.
⇒ (sec²θ - 1)(sec²θ - 1 + 1).
⇒ (sec²θ - 1)(sec²θ).
⇒ sec⁴θ - sec²θ.
Hence proved.
Similar questions