show that tanA. sinA+cosA=secA
Answers
Answered by
0
tanAsinA+cosA
sinA/cosA*sinA+cosA
sin*2A/cosA+cosA
sin*2A+cos*2A/cosA
1/cosA
secA
Therefore LHS=RHS
Answered by
1
Answer:
It's simple!! Follow the steps and you'll get the proof
Step-by-step explanation:
tanA. sinA + cosA = secA
L. H. S =
tanA. SinA + cosA
(sina/cosA)(sinA) + cosA [tanA = Sina/CosA]
(sin^2A/cosA) + cosA
(sin^2A+cos^2A)/cosA
1/cosA [sin^2A + cos^2A = 1]
secA
R. H. S =
secA
LHS = RHS
hence proved!
Similar questions