Math, asked by ushamahar9722, 1 year ago

Show that TanA.Tan(60-A).Tan(60+A) = Tan3A

Answers

Answered by spiderman2019
1

Answer:

Step-by-step explanation:

TanA. [Tan60 - TanA/1+Tan60.TanA]. [Tan60 + TanA/1 - Tan60.TanA]

= TanA [Tan60 - TanA][Tan60 + TanA] / [1+Tan60.TanA] [1 - Tan60.TanA]

//  [Tan60 - TanA][Tan60 + TanA] is in the form (a+b) (a-b). Similarly  [1+Tan60.TanA] [1 - Tan60.TanA] is in the form (a+b) (a-b). But (a+b)(a-b) = a² - b²

= TanA [Tan²60 - Tan²A / 1 - Tan²60Tan²A]

//Tan60 = √3.

=  TanA ( 3 - Tan²A] / 1 - 3Tan²A

= 3TanA - Tan³A / 1 - 3Tan²A

//Remember Tan3A = 3TanA - Tan³A / 1 - 3Tan²A

= Tan3A

= R.H.S

Hence Proved

Similar questions