Math, asked by charan606785, 3 months ago

show that tanh -1(1/2)=1/2loge3​

Answers

Answered by shadowsabers03
7

The hyperbolic tangent function is defined as,

\longrightarrow\boxed{\tanh x=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}}

Let us derive the definition for it's inverse.

Assume,

\longrightarrow y=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}

Multiplying both numerator and denominator by e^x, we get,

\longrightarrow y=\dfrac{e^{2x}-1}{e^{2x}+1}

\longrightarrow ye^{2x}+y=e^{2x}-1

\longrightarrow 1+y=e^{2x}-ye^{2x}

\longrightarrow 1+y=e^{2x}(1-y)

\longrightarrow e^{2x}=\dfrac{1+y}{1-y}

Taking antilog,

\longrightarrow 2x=\log_e\left(\dfrac{1+y}{1-y}\right)

\longrightarrow x=\dfrac{1}{2}\log_e\left(\dfrac{1+y}{1-y}\right)

Thus the inverse hyperbolic tangent function is defined as,

\longrightarrow\boxed{\tanh^{-1}x=\dfrac{1}{2}\log_e\left(\dfrac{1+x}{1-x}\right)}

Put x=\dfrac{1}{2}. Then,

\longrightarrow \tanh^{-1}\left(\dfrac{1}{2}\right)=\dfrac{1}{2}\log_e\left(\dfrac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)

\longrightarrow \tanh^{-1}\left(\dfrac{1}{2}\right)=\dfrac{1}{2}\log_e\left(\dfrac{\left(\frac{3}{2}\right)}{\left(\frac{1}{2}\right)}\right)

\longrightarrow\underline{\underline{\tanh^{-1}\left(\dfrac{1}{2}\right)=\dfrac{1}{2}\log_e3}}

Similar questions