Math, asked by khushi15686, 1 day ago

Show that

(1 + cos \frac{\pi}{10} )(1 + cos \frac{3\pi}{10} )(1 + cos \frac{7\pi}{10} )(1 + cos \frac{9\pi}{10} ) =  \frac{1}{16}

Don't spam, please provide complete steps​

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \bigg(1 + cos\dfrac{\pi}{10} \bigg)\bigg(1 + cos\dfrac{3\pi}{10} \bigg)\bigg(1 + cos\dfrac{7\pi}{10} \bigg)\bigg(1 + cos\dfrac{9\pi}{10} \bigg) \\

Consider,

\rm \: cos\bigg(\dfrac{7\pi}{10} \bigg) \\

\rm \: =  \: cos\bigg(\pi - \dfrac{3\pi}{10} \bigg) \\

\rm \: =  \: -  \:  cos\bigg(\dfrac{3\pi}{10} \bigg) \\

\rm\implies \:cos\bigg(\dfrac{7\pi}{10} \bigg) =  \: -  \:  cos\bigg(\dfrac{3\pi}{10} \bigg) \\

Now, Consider

\rm \: cos\bigg(\dfrac{9\pi}{10} \bigg) \\

\rm \:  =  \: cos\bigg(\pi - \dfrac{\pi}{10} \bigg) \\

\rm \: =  \: -  \:  cos\bigg(\dfrac{\pi}{10} \bigg) \\

\rm\implies \:cos\bigg(\dfrac{9\pi}{10} \bigg) =  \: -  \:  cos\bigg(\dfrac{\pi}{10} \bigg) \\

So, Consider again,

\rm \: \bigg(1 + cos\dfrac{\pi}{10} \bigg)\bigg(1 + cos\dfrac{3\pi}{10} \bigg)\bigg(1 + cos\dfrac{7\pi}{10} \bigg)\bigg(1 + cos\dfrac{9\pi}{10} \bigg) \\

So, this expression can be rewritten as

\rm \:  = \bigg(1 + cos\dfrac{\pi}{10} \bigg)\bigg(1 + cos\dfrac{3\pi}{10} \bigg)\bigg(1 -  cos\dfrac{3\pi}{10} \bigg)\bigg(1 -  cos\dfrac{\pi}{10} \bigg) \\

\rm \: =  \: \bigg(1 -  {cos}^{2} \dfrac{\pi}{10} \bigg)\bigg(1 -  {cos}^{2} \dfrac{3\pi}{10} \bigg) \\

\rm \: =  \:  {sin}^{2}\bigg(\dfrac{\pi}{10} \bigg) \:  {sin}^{2}\bigg(\dfrac{3\pi}{10} \bigg) \\

\rm \: =  \:  {sin}^{2} 18 \degree \:  {sin}^{2} 54\degree \\

\rm \: =  \:  {(sin18\degree \times sin54\degree)}^{2}

\rm \: =  \:  {\bigg(\dfrac{ \sqrt{5}  - 1}{4} \times \dfrac{ \sqrt{5}  + 1}{4}  \bigg)}^{2}  \\

\rm \: =  \:  {\bigg(\dfrac{ (\sqrt{5})^{2}   - 1}{16}   \bigg)}^{2}  \\

\rm \: =  \:  {\bigg(\dfrac{ 5   - 1}{16}   \bigg)}^{2}  \\

\rm \: =  \:  {\bigg(\dfrac{4}{16}   \bigg)}^{2}  \\

\rm \: =  \:  {\bigg(\dfrac{1}{4}\bigg)}^{2}  \\

\rm \: =  \:  \dfrac{1}{16}   \\

Hence,

\boxed{\sf{\bigg(1 + cos\dfrac{\pi}{10} \bigg)\bigg(1+cos\dfrac{3\pi}{10} \bigg)\bigg(1+cos\dfrac{7\pi}{10} \bigg)\bigg(1+cos\dfrac{9\pi}{10} \bigg)=\frac{1}{16}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Values Used

\boxed{\sf{  \: {\pi}^{c}  = 180\degree \: }} \\

\boxed{\sf{  \:sin18\degree =  \frac{ \sqrt{5}  - 1}{4} \: }} \\

\boxed{\sf{  \:sin54\degree =  \frac{ \sqrt{5}  + 1}{4} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:cos36\degree =  \frac{ \sqrt{5}  + 1}{4} \: }} \\

\boxed{\sf{  \:cos72\degree =  \frac{ \sqrt{5} -  1}{4} \: }} \\

\boxed{\sf{  \:sin72\degree =  \frac{ \sqrt{10  + 2 \sqrt{5} }}{4} \: }} \\

\boxed{\sf{  \:cos18\degree =  \frac{ \sqrt{10  + 2 \sqrt{5} }}{4} \: }} \\

\boxed{\sf{  \:cos54\degree =  \frac{ \sqrt{10 -  2 \sqrt{5} }}{4} \: }} \\

\boxed{\sf{  \:sin36\degree =  \frac{ \sqrt{10 -  2 \sqrt{5} }}{4} \: }} \\

Answered by maheshtalpada412
25

Answer:

 \begin{aligned}  \color{red}\text { LHS } & \color{red}=\left(1+\cos 18^{\circ}\right)\left(1+\cos 54^{\circ}\right)\left(1+\cos 126^{\circ}\right)\left(1+\cos 162^{\circ}\right) \\  \\  &\color{blue}=\left(1+\cos 18^{\circ}\right)\left(1+\cos 54^{\circ}\right)\left(1+\cos \left(180^{\circ}-54^{\circ}\right)\right) \times ( 1+   \cos(180 {}^{ \circ  } - 18 {}^{ \circ}  ) )\\  \\ &\color{maroon}=\left(1+\cos 18^{\circ}\right)\left(1+\cos 54^{\circ}\right)\left(1-\cos 54^{\circ}\right)\left(1-\cos 18^{\circ}\right) \\  \\ &\color{orange}=\left(1-\cos ^{2} 18^{\circ}\right)\left(1-\cos ^{2} 54^{\circ}\right) \\  \\ &\color{Crimson}=\sin ^{2} 18^{\circ} \sin ^{2} 54^{\circ}=\sin ^{2} 18^{\circ}\left(\sin \left(90^{\circ}-36^{\circ}\right)\right)^{2} \\ \\ &\color{navy}=\sin ^{2} 18^{\circ} \cos ^{2} 36^{\circ}=\left(\frac{\sqrt{5}-1}{4}\right)^{2}\left(\frac{\sqrt{5}+1}{4}\right)^{2} \\  \\ &\color{blue}=\left(\frac{5-1}{16}\right)^{2}=\frac{1}{16}=\text { RHS. } \end{aligned}

Similar questions