Math, asked by suryamps1036, 1 year ago

Show that 1+i^{10}+i^{20}+i^{30} is real number.

Answers

Answered by VEDULAKRISHNACHAITAN
0

Answer:

0

Step-by-step explanation:

Hi,

Consider 1 + i¹⁰ + i²⁰ + i³⁰

We know that i² = -1

i⁴ = (i²)² = (-1)² = 1

i¹⁰ = i⁸⁺² = i⁸*i² = (i⁴)²*i² = (1)²*(-1) = -1

i²⁰ =  (i⁴)⁵ = (1)⁵ = 1

i³⁰ = i²⁸⁺² = i²⁸*i² = (i⁴)⁷*i² = (1)⁷*(-1) = -1

Hence,1 + i¹⁰ + i²⁰ + i³⁰

= 1 - 1 + 1 - 1

= 0

Hence, 1 + i¹⁰ + i²⁰ + i³⁰ is a real number.

Hope, it helps !

Answered by mysticd
0
Solution :

1+i^{10}+i^{20}+i^{30}

\textsf { We know that , $ i^{2} = -1$ }

= 1+\left ( i^{2} \right )^{5} +\left ( i^{2} \right )^{10} + \left ( i^{2} \right )^{15}

= 1+ \left ( -1 \right )^{5} + \left ( -1 \right )^{10}<br />+\left ( -1 \right )^{15}

= $ 1 + (-1 ) + 1 + ( -1 ) $

= $ 1 - 1 + 1 - 1 $

= $ 0 $

\textsf { Real number }

••••
Similar questions