Math, asked by SharmaShivam, 1 year ago

Show that :
2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)+1=0

Answers

Answered by shantanu786
0

1)sin^2A+cos^2A=1

2)1-sin^2A=cos^2A

3)1-cos^2A=sin^2A

=2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1

=2sin^6A+2cos^6A-3sin^4A-3cos^4A

+sin^2A+cos^2A

=2sin^6A+2cos^6A-2sin^4A-2cos^4A-sin^4A-cos^4A+sin^2A+cos^2A

=2sin^6A-2sin^4A+2cos^6A-2cos^4A

+sin^2A-sin^4A+cos^2A-cos^4A

=-2sin^4A(1-sin^2A)-2cos^4A(1-cos^2A)

sin^2A(1-sin^2A)+cos^2A(1-cos^2A)

=-2sin^4Acos^2A-2cos^4Asin^2A

+sin^2Acos^2A+cos^2Asin^2A

=-2sin^2Acos^2A(sin^2A+cos^2A)

+2sin^2Acos^2A

=-2sin^2Acos^2A+2sin^2Acos^2A

=0

Hence,

2(sin^6A+cos^6A)-3(sin^4A+cos^4A)+1=0

Attachments:
Answered by Anonymous
34

SOLUTION

 =  > 2(sin {}^{6}  \theta + cos {}^{6}  \theta) - 3(sin {}^{4}  \theta + cos {}^{4}  \theta) + 1 \\  \\  =  >2(sin {}^{2}  \theta)3 + (cos {}^{2} \theta)3 - 3(sin {}^{2} \theta)2 + (cos {}^{2}  \theta)2 + 1 \\  \\  =  > 2(sin {}^{2}  \theta + cos {}^{2} \theta)3 - 3sin {}^{2}  \theta \: cos {}^{2}  \theta(sin {}^{2}  \theta + cos {}^{2}  \theta) - 3(sin {}^{2}  \theta + cos {}^{2}  \theta)2 - (2sin {}^{2}  \theta \: cos {}^{2}  \theta) + 1 \\  \\  =  > the \: algebraic \: identity \\  =  > a {}^{3}  + b {}^{3}  = (a + b) {}^{3}  - 3ab(a + b) \: and \:  \\ a {}^{2}  + b {}^{2}  = (a + b) {}^{2}  - 2ab \\ are \: used \: in \: the \: above \: step \: where \\  \\   =  > a = sin {}^{2}  \theta \: and \: b = cos {}^{2}  \theta \\ writting \: sin {}^{2}  \theta  + cos {}^{2}  \theta = 1 \: we \: have \\  \\  =  > 2(1 - 3sin {}^{2}  \theta \: cos {}^{2}  \theta) - 3( - 2sin {}^{2}  \theta \: cos {}^{2}  \theta) + 1 \\  \\   =  > 2 - 6sin {}^{2}  \theta \: cos {}^{2} \theta - 3 + 6sin {}^{2}  \theta \: cos {}^{2}  \theta + 1 \\  \\  =  >  - 3 + 3 = 0 \: proved

HOPE IT HELPS

Similar questions