Math, asked by dshilpa756, 1 day ago

show that:

 {(2p - q)}^{2} + 8pq =  {(2p + q)}^{2}
using these identities please send me the answer :-
 {(a + b)}^{2} =  {a}^{2} + {b}^{2} + 2(a)(b)
 {(a - b)}^{2} =  {a}^{2} +  {b}^{2} - 2 (a)(b)
  {a}^{2} - {b}^{2}  =  ( a+ b)(a-b )
(x + a)(x + b) = x(x + b) + a(x + b)

Answers

Answered by chandan454380
0

Answer:

See the explanation

Step-by-step explanation:

\text{LHS}=(2p-q)^2+8pq

       =(2p)^2+q^2-2(2p)(q)+8pq

       =4p^2+q^2-4pq+8pq\\=4p^2+q^2+4pq

\text{RHS}=(2p+q)^2

       =(2p)^2+q^2+2(2p)(q)

       =4p^2+q^2+4pq

Clearly \text{LHS}=\text{RHS}, hence proved        

Similar questions