Math, asked by kunwarkhehra5, 3 months ago

Show that
3nx ^{2}  - 2mx + 3n = 0

Attachments:

Answers

Answered by meenassonwane
2

Step-by-step explanation:

Answer:

nx² - 2mx + n = 0

Step-by-step explanation:

If x = square root of (m+n)+square root of (m-n)/square root of (m+n)-square root (m-n), where n which isn't equal 0 , then find the value of nx^2 - 2mx + n.

\begin{gathered}x = \frac{\sqrt{m + n} + \sqrt{m-n}}{\sqrt{m + n} - \sqrt{m-n}}\\ \\Multiplying \: \& \: divide\: by \: \sqrt{m + n} + \sqrt{m-n}\\ \\x = \frac{\sqrt{m + n} + \sqrt{m-n}}{\sqrt{m + n} - \sqrt{m-n}} \times \frac{\sqrt{m + n} + \sqrt{m-n}}{\sqrt{m + n} + \sqrt{m-n}} \\ \\\\x = \frac{m + n + m - n + 2\sqrt{m^2 - n^2} }{m + n - (m-n) } \\ \\x = \frac{2(m + \sqrt{m^2 - n^2})}{2n} \\ \\x = \frac{m + \sqrt{m^2 - n^2}}{n} \\ \\nx = m + \sqrt{m^2 - n^2} \\ \\nx - m = \sqrt{m^2 - n^2} \\\end{gathered}

x=

m+n

m−n

m+n

+

m−n

Multiplying&divideby

m+n

+

m−n

x=

m+n

m−n

m+n

+

m−n

×

m+n

+

m−n

m+n

+

m−n

x=

m+n−(m−n)

m+n+m−n+2

m

2

−n

2

x=

2n

2(m+

m

2

−n

2

)

x=

n

m+

m

2

−n

2

nx=m+

m

2

−n

2

nx−m=

m

2

−n

2

squaring both sides

(nx-m)² = m² - n²

=> n²x² + m² - 2mnx = m² - n²

=> n²x² - 2mnx = - n²

Diving by n both sides

=> nx² - 2mx = - n

=> nx² - 2mx + n = 0

Similar questions