Math, asked by pavani2034, 19 days ago

Show that :(9p-5q)^{2} + 180pq = (9p+5q)^{2}

Answers

Answered by JashaswiniNanda
3

Answer:

   (9p−5q)2+180pq=(9p+5q)2

LHS=(9p)2−2(9p)(5q)+(5q)2+180pq

       =81p2−90pq+25q2+180pq

       =81p2+90pq+25q2

RHS=(9p+5q)2

       =(9p)2+2(9p)(5q)+(5q)2

       =81p2+90pq+25q2

LHS=RHS

Answered by talpadadilip417
1

Step-by-step explanation:

\tt\red {Given :(9p-5q)^{2} + 180pq = (9p+5q)^{2}}

LHS=\tt\pink{(9p-5q)^{2} + 180pq}

 \tt \blue{ \implies81p^{2}-90pq+25q^{2}+180pq  \quad \quad \:   \bigg[  \dashrightarrow \: Using  \: the  \: binomial  \: theorem \bigg]}

 \tt \orange{ \implies81p^{2}+90pq+25q^{2} }

 \tt \purple{ \implies\left(9p+5q\right)^{2} = RHS}

Similar questions