Math, asked by Saby123, 7 months ago

Show that -


  {(a {x}^{2}  + b {y}^{2}  + c {z}^{2}) }^{ \frac{1}{3} }  =  {a}^{ \frac{1}{3} }  +  {b}^{ \frac{1}{3} }  +  {c}^{ \frac{1}{3} }


If

 a {x}^{3}   =  b {y}^{3} =  c {z}^{3}

and

 \dfrac{1}{x}  +  \dfrac{1}{y}  +  \dfrac{1}{z}  = 1

Answers

Answered by EuphoricEpitome
11

Given:

 a {x}^{3} = b {y}^{3} = c {z}^{3}

and

 \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1

To prove:

 {(a {x}^{2} + b {y}^{2} + c {z}^{2}) }^{ \frac{1}{3} } = {a}^{ \frac{1}{3} } + {b}^{ \frac{1}{3} } + {c}^{ \frac{1}{3} }

Solution -

 Assume\\ \\ \\a {x}^{3} = b {y}^{3} = c {z}^{3} = K\\ \\ \\ a = \dfrac{K}{x^3} \\ \\ \\ b = \dfrac{K}{y^3} \\ \\ \\ c = \dfrac{K}{z^3}

by\: putting \:the \: value \:of \: a,b,c\\ \\ \\ {(a {x}^{2} + b {y}^{2} + c {z}^{2}) }^{ \frac{1}{3} } = {a}^{ \frac{1}{3} } + {b}^{ \frac{1}{3} } + {c}^{ \frac{1}{3} }

 [(\dfrac{K}{\cancel{x^3}} \times \cancel{x^2}) + (\dfrac{K}{\cancel{y^3}} \times \cancel{y^2}) + (\dfrac{K}{\cancel{z^3}} \times \cancel{z^2})]^{\frac{1}{3}}

 =  (\dfrac{K}{x^3})^{\frac{1}{3}} + (\dfrac{K}{y^3})^{\frac{1}{3}} + (\dfrac{K}{z^3})^{\frac{1}{3}}

 [\dfrac{K}{x} + \dfrac{K}{y} + \dfrac{K}{z}]^{\frac{1}{3}}  = \dfrac{K ^{\frac{1}{3}} }{x}+ \dfrac{K^{\frac{1}{3}} } {y} + \dfrac{K^{\frac{1}{3}} } {z}

 [K (\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z})]^\frac{1}{3} = K^{\frac{1}{3}}(\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z})

\sf by\ putting\ the\ value\ of\ \frac{1}{x} +\frac{1}{y} +\frac{1}{z} \\ \\ \\ {[ K \times 1 ]}^{\frac{1}{3}} = [ {K}^{\frac{1}{3}} \times 1 ] \\ \\ {K}^{\frac{1}{3}} = {K}^{\frac{1}{3}} \\ \\ LHS = RHS

{\pink{\boxed{Hence\: verified}}}

Answered by BrainlyTornado
8

GIVEN:

ax³ = by³ = cz³

1/x + 1/y + 1/z = 1

TO PROVE:

 {(a {x}^{2} + b {y}^{2} + c {z}^{2}) }^{ \frac{1}{3} } = {a}^{ \frac{1}{3} } + {b}^{ \frac{1}{3} } + {c}^{ \frac{1}{3} }

NEEDED TERMS:

1/x + 1/y + 1/z = 1

Take L.C.M

(yz + xz + xy) ÷ xyz = 1

yz + xz + xy = xyz

ax³ = by³

Take cube root on both sides

{a}^{ \frac{1}{3} } x   =   {b}^{ \frac{1}{3} } y  \\ {b}^{ \frac{1}{3} } =  \frac{{a}^{ \frac{1}{3} } x}{y}

ax³ = cz³

Take cube root on both sides.

{a}^{ \frac{1}{3} } x   =   {c}^{ \frac{1}{3} } z  \\ {c}^{ \frac{1}{3} } =  \frac{{a}^{ \frac{1}{3} } x}{z}

PROOF:

{(a {x}^{2} + b {y}^{2} + c {z}^{2}) }^{ \frac{1}{3} } = {a}^{ \frac{1}{3} } + {b}^{ \frac{1}{3} } + {c}^{ \frac{1}{3} } \\ Multiply \: by \:  {(xyz)}^{ \frac{1}{3} } on \: both \: numerator \\ and \: denominator \: on \: left \: side \\  \frac{{(xyz)}^{ \frac{1}{3} }}{{(xyz)}^{ \frac{1}{3} }} {(a {x}^{2} + b {y}^{2} + c {z}^{2}) }^{ \frac{1}{3} }  = {a}^{ \frac{1}{3} } + {b}^{ \frac{1}{3} } + {c}^{ \frac{1}{3} } \\  \\  Take \: L.H.S \\   = { \frac{(a {x}^{3}yz + b {y}^{3}xz + c {z}^{3}  xy) }{ {(xyz)}^{ \frac{1}{3} } } }^{ \frac{1}{3} }  \\ Substitute \: a {x}^{3}  = b {y}^{3}  = c {z}^{3}  \\  = { \frac{(a {x}^{3}yz + a {x}^{3}xz + a {x}^{3}  xy) }{ {(xyz)}^{ \frac{1}{3} } } }^{ \frac{1}{3} }  \\ =   {(a {x}^{3} )}^{ \frac{1}{3} }  { (\frac{xy  + yz + zx}{xyz}) }^{ \frac{1}{3} }  \\  =  {a}^{ \frac{1}{3} } x( {1)}^{ \frac{1}{3} }  \\  = {a}^{ \frac{1}{3} } x \\ \\Take \: R.H.S \\  = {a}^{ \frac{1}{3} } + {b}^{ \frac{1}{3} } + {c}^{ \frac{1}{3} } \\ Substitute \: {b}^{ \frac{1}{3} } =  \frac{ {a}^{ \frac{1}{3} }x }{y} and \:   \:  {c}^{ \frac{1}{3} }  = \frac{ {a}^{ \frac{1}{3} }x }{z} \\  = {a}^{ \frac{1}{3}} +  \frac{ {a}^{ \frac{1}{3} }x }{y} + \frac{ {a}^{ \frac{1}{3} }x }{z} \\  =  {a}^{ \frac{1}{3} }( \frac{yz + zx + xy}{yz} ) \\ Equate \: L.H.S\: and \: R.H.S \\ {a}^{ \frac{1}{3} } x =   {a}^{ \frac{1}{3} }( \frac{yz + zx + xy}{yz} ) \\ x  =   \frac{yz + zx + xy}{yz}  \\ xyz = yz  + xy + zx

HENCE PROVED.

Similar questions