Math, asked by MichWorldCutiestGirl, 19 days ago

Show that,

{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{100} } < 20}


Spam will be immediately reported.​​

Answers

Answered by vijayalakahmi0901
2

Step-by-step explanation:

I hope that this sum will help ur question

Attachments:
Answered by pradhanmadhumita2021
5

\begin{gathered}\rm \pink{We \:  have \:  to \:  prove  \: that,}\end{gathered}\\ \begin{gathered}\rm\pink{ {\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{100} } < 20}}\end{gathered}\\ \begin{gathered}\rm \pink{To \:  prove \:  this \:  result, let's  \: prove \:  first,}\end{gathered}\\\begin{gathered}\rm \pink{{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{n} } < 2 \sqrt{n}}}\end{gathered}\\\begin{gathered}\rm \pink{where, n  \: is \:  a  \: natural  \: number}\end{gathered}\\ \begin{gathered}\rm \pink{To \:  prove  \: this \:  result, we \:  use  \: Principal \:  of \:  Mathematical  \: Induction.}\end{gathered} \\\begin{gathered}\rm \pink{Let \:  assume \:  that}\end{gathered} \\\begin{gathered}\rm \pink{P(n) : {\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{n} } < 2 \sqrt{n}}} \end{gathered}\\ \begin{gathered}\rm \pink{Step :- 1 \:  For  \: n = 1}\end{gathered}\\\begin{gathered}\rm \pink{P(1) : 1 < 2}\end{gathered}\\\begin{gathered}\rm \pink{{\implies \:P(n) \: is \: true \: for \: n \: = \: 1}}\end{gathered}\\\begin{gathered}\rm \pink{Step :- 2 \:  Assume \:  that  \: P \: (n)  \: is \:  true \:  for  \: n \:  = k, where \:  k  \: is \:  some \:  natural \:  number.}\end{gathered}\\\begin{gathered}\rm \pink{P(k) : {\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{k} } < 2 \sqrt{k} } - - - (1)} \end{gathered}\\\begin{gathered}\rm \pink{Step :- 3 \:  We \:  have \:  to \:  prove \:  that \:  P \: (n)  \: is  \: true \:  for \:  n  \: = k + 1}\end{gathered} \\\begin{gathered}\rm \pink{P(k + 1):{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{k}} + \frac{1}{ \sqrt{k + 1} } < 2 \sqrt{k + 1}}}\end{gathered}\\\begin{gathered}\rm\pink{From \:  equation \:  (1), we  \: have}\end{gathered}\\\begin{gathered}\rm\pink{{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{k} } < 2 \sqrt{k}}} \end{gathered}\\\begin{gathered}\rm \pink{can \:  be \:  further \:  rewritten  \: as}\end{gathered}\\\begin{gathered}\rm \pink{{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{k} } + \frac{1}{ \sqrt{k + 1} } < 2 \sqrt{k} } + \frac{1}{\sqrt{k + 1}}}\end{gathered} \\\begin{gathered}\rm \pink{< 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} + 2 \sqrt{k} - 2 \sqrt{k + 1}} \end{gathered}\\\begin{gathered}\rm \pink{< 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} + 2 (\sqrt{k} - \sqrt{k + 1})} \end{gathered}\\\begin{gathered}\rm \pink{ < 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} + 2 \bigg(\sqrt{k} - \sqrt{k + 1} \times \frac{ \sqrt{k} + \sqrt{k + 1}}{ \sqrt{k} + \sqrt{k + 1}} \bigg)} \end{gathered}\\\begin{gathered}\rm \pink{< 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} + 2 \bigg( \frac{k - k - 1}{ \sqrt{k} + \sqrt{k + 1}} \bigg)} \end{gathered}\\\begin{gathered}\rm \pink{< 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} - 2 \bigg( \frac{1}{ \sqrt{k} + \sqrt{k + 1}} \bigg)}\end{gathered} \\\begin{gathered}\rm \pink{ < 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} - 2 \bigg( \frac{1}{ \sqrt{k + 1} + \sqrt{k + 1}} \bigg)} \end{gathered}\\\begin{gathered}\rm \pink{< 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} - 2 \bigg( \frac{1}{ \sqrt{k + 1} + \sqrt{k + 1}} \bigg)}\end{gathered}\\\begin{gathered}\rm \pink{ < 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} - 2 \bigg( \frac{1}{2 \sqrt{k + 1}} \bigg)}\end{gathered}\\\begin{gathered}\rm \pink{ < 2 \sqrt{k} + \frac{1}{\sqrt{k + 1}} - \bigg( \frac{1}{\sqrt{k + 1}} \bigg)}\end{gathered}\\\begin{gathered}\rm \pink {< 2 \sqrt{k}}\end{gathered}\\\begin{gathered}\rm \pink{< 2 \sqrt{k + 1}}\end{gathered}\\\begin{gathered}\rm\pink{Hence,}\end{gathered}\\\begin{gathered}\rm\pink{{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{k}} + \frac{1}{ \sqrt{k + 1} } < 2 \sqrt{k + 1}}} \end{gathered}\\\begin{gathered}\rm \pink{\implies \:P(n) \: is \: true \: for \: n \: = \: k + 1} \end{gathered} \\\begin{gathered}\rm\pink{Hence, By  \: the \:  Process \:  of  \: Principal  \: of \:  Mathematical  \: Induction, we  \: get}\end{gathered}\\\begin{gathered}\rm \pink{{\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{n} } < 2 \sqrt{n}}} \end{gathered}\\\begin{gathered}\rm \pink{Now, Substitute  \: n = 100, in  \: this  \: result, we  \: get}\end{gathered}\\\begin{gathered}\rm \pink{ {\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{100} } < 2 \sqrt{100}}} \end{gathered}\\\begin{gathered}\rm \pink{\implies \:\rm \: {\displaystyle\frac{1}{ \sqrt{1} } + \frac{1}{ \sqrt{2} } + \frac{1}{ \sqrt{3} } + ... + \frac{1}{ \sqrt{100} } < 20}} \end{gathered}\\

Similar questions