Math, asked by adityaayushi2712, 1 month ago

show that
 \frac{1}{1 +  {a}^{y - x}  +  {a}^{z - x} }  +  \frac{1}{1 +  {a}^{y - z}    +  {a}^{x - y} }  +  \frac{1}{1 +  {a}^{x - z} +  {a}^{y - z}  }
please uts urgent

Answers

Answered by hhahaah
1

\large\text{\underline{Proper Question}}

Show that \dfrac{1}{1+a^{y-x}+a^{z-x}}+\dfrac{1}{1+a^{z-y}+a^{x-y}}+\dfrac{1}{1+a^{x-z}+a^{y-z}}=1.

\large\text{\underline{Solution}}

We are given the rational expression of the following;

\dfrac{1}{1+a^{y-x}+a^{z-x}}+\dfrac{1}{1+a^{z-y}+a^{x-y}}+\dfrac{1}{1+a^{x-z}+a^{y-z}}

Multiply \dfrac{a^{x}}{a^{x}},\dfrac{a^{y}}{a^{y}},\dfrac{a^{z}}{a^{z}} into each fraction respectively;

=\dfrac{a^{x}}{a^{x}+a^{y}+a^{z}}+\dfrac{a^{y}}{a^{y}+a^{z}+a^{x}}+\dfrac{a^{z}}{1+a^{x}+a^{y}}

On simplifying,

=\dfrac{a^{x}+a^{y}+a^{z}}{a^{x}+a^{y}+a^{z}}=1

Similar questions