Math, asked by kananmehtta, 5 months ago

Show that

 \frac{n!}{r!(n - r)!} + \frac{n!}{(r - 1)!(n - r + 1)!} = \frac{(n +1)!}{r!(n - r + 1)!}

Answers

Answered by EnchantedGirl
9

To prove:-

\mapsto \sf \frac{n!}{r!(n-r)!} +\frac{n!}{(r-1)!(n-r+1)!} =\frac{(n+1)!}{r!(n-r+1)!}

\\

Proof:-

\\

LHS:

:\implies \sf \frac{n!}{r!(n-r)!} +\frac{n!}{(r-1)!(n-r+1)!} \\\\We\ know,\\\\\leadsto [r!=r(r-1)] \\ And,\\\\\leadsto (n-r+1)!=(n-r+1)(n-r+1-1)\\\\=(n-r-1)(n-r)!\\\\Now,\\\\:\implies \sf \frac{n!}{r(r-1)!(n-r)!} +\frac{n!}{(r-1)!(n-r+1)(n-r)!} \\\\

Taking common,

:\implies \sf \frac{n!}{(r-1)!} [\frac{1}{r} +\frac{1}{n-r+1} ]\\\\:\implies \sf \frac{n!}{(r-1)!(n-r)!} [\frac{n-\cancel{r}+1+\cancel{r}}{r(n-r+1)} ]\\\\:\implies \sf \frac{n!(n+1)}{r(r-1)!(n-r+1)(n-r)!} \\\\

Using (n+1)! = (n+1)n! ,

\mapsto \underline{\boxed{\sf \frac{(n+1)!}{r!(n-r+1)!} }}

Hence proved !

_________________

Answered by Anonymous
0

★To prove:-

\mapsto \sf \frac{n!}{r!(n-r)!} +\frac{n!}{(r-1)!(n-r+1)!} =\frac{(n+1)!}{r!(n-r+1)!}

\\

★Proof:-

\\

LHS:

:\implies \sf \frac{n!}{r!(n-r)!} +\frac{n!}{(r-1)!(n-r+1)!} \\\\We\ know,\\\\\leadsto [r!=r(r-1)] \\ And,\\\\\leadsto (n-r+1)!=(n-r+1)(n-r+1-1)\\\\=(n-r-1)(n-r)!\\\\Now,\\\\:\implies \sf \frac{n!}{r(r-1)!(n-r)!} +\frac{n!}{(r-1)!(n-r+1)(n-r)!} \\\\

Taking common,

:\implies \sf \frac{n!}{(r-1)!} [\frac{1}{r} +\frac{1}{n-r+1} ]\\\\:\implies \sf \frac{n!}{(r-1)!(n-r)!} [\frac{n-\cancel{r}+1+\cancel{r}}{r(n-r+1)} ]\\\\:\implies \sf \frac{n!(n+1)}{r(r-1)!(n-r+1)(n-r)!} \\\\

Using (n+1)! = (n+1)n! ,

\mapsto \underline{\boxed{\sf \frac{(n+1)!}{r!(n-r+1)!} }}

Hence proved !

_________________

Similar questions