Math, asked by PragnyaParmita, 2 months ago

Show that
 \frac{ {x}^{ - 1} +  {y}^{ - 1}  } {x ^{ - 1} }  +  \frac{ {x}^{ - 1} - y ^{ -1 } }{x ^{ - 1} }  =  \frac{ {x}^{2} +  {y}^{2}  }{xy}

Answers

Answered by sandy1816
1

 \frac{ {x}^{ - 1} +  {y}^{ - 1}  }{ {x}^{ - 1} }  +  \frac{ {x}^{ - 1}  -  {y}^{ - 1} }{ {y}^{ - 1} }  \\  =  \frac{ \frac{1}{x}  +  \frac{1}{y} }{ \frac{1}{x} }  +  \frac{ \frac{1}{x} -  \frac{1}{y}  }{ \frac{1}{y} }  \\  =  \frac{x + y}{xy}  \times x +  \frac{y - x}{xy}  \times y \\  =  \frac{x + y}{y}  +  \frac{y - x}{x}  \\  =  \frac{ {x}^{2}  + xy +  {y}^{2} - xy }{xy}  \\  =  \frac{ {x}^{2} +  {y}^{2}  }{xy}

Similar questions