Math, asked by PragyaTbia, 1 year ago

Show that \left|\begin{array}{ccc}bc&b+c&1\\ca&c+a&1\\ab&a+b&1\end{array}\right| = (a - b)(b - c)(c - a).

Answers

Answered by hukam0685
0

Answer:


Step-by-step explanation:

\left|\begin{array}{ccc}bc&b+c&1\\ca&c+a&1\\ab&a+b&1\end{array}\right|\\

it can be easily solved by applying some elementary row operations

R_{3} -> R_{3}-R_{1}\\\\R_{2} -> R_{2}-R_{1}\\\\\\\left|\begin{array}{ccc}bc&b+c&1\\ca-bc&c+a-b-c&1-1\\ab-bc&a+b-b-c&1-1\end{array}\right|\\\\\\\left|\begin{array}{ccc}bc&b+c&1\\c(a-b)&a-b&0\\b(a-c)&a-c&0\end{array}\right|\\\\\\

now expand the determinant along C3

=1[b(a-c)(a-b)-c(a-b)(a-c)]\\\\=(a-c)(a-b)(a-c)

hence proved


Similar questions