Physics, asked by shivva0, 7 months ago

Show that
 \mathtt{ {sin}^{ - 1} \frac{3}{5}  } = x \: and \:  {sin}^{ - 1 }  \frac{8}{17}  = y

Answers

Answered by CrEEpycAmp
13

\underline{\huge{Answer:-}}

Explanation:

Let  \mathtt{ {sin}^{ - 1} \frac{3}{5} } = x \: and \: {sin}^{ - 1 } \frac{8}{17} = y

 \implies \large \mathbb{sin \: x =  \frac{3}{5} \: and \: sin \: y =  \frac{8}{17}  } \\

 \implies  \:  \large \mathbb{cos \: x =  \sqrt{1 -  {sin}^{2}  \: x } =  \sqrt{1 -  \frac{9}{25}  } =  \frac{4}{5}   } \\

 \implies  \:  \large \mathbb{cos \: y =  \sqrt{1 -  {sin}^{2}  \: y} =  \sqrt{1 -  \frac{64}{289} }  =  \frac{15}{17}  } \\

 \implies  \:  \large \mathbb{ \cos(x - y)  = cos \: x \: cos \: y + sin \: x \: sin \: y} \\

 \implies \:  \large \mathbb{ =  \frac{4}{5}  \times  \frac{15}{17} +  \frac{3}{5} \times  \frac{8}{17}  =  \frac{84}{85}   } \\

 \implies \:  \large \mathbb{x - y =  {cos}^{ - 1}(  \frac{84}{85} )} \\

\large \fbox \mathtt{Hence \:  \:  \:  {sin}^{ - 1} \frac{3}{5} -  {sin}^{ - 1} \frac{8}{17} =  {cos}^{ - 1}   \frac{84}{85}    } \\

Answered by Anonymous
2

Answer:

5×7-4×6

5×7-4×6=35-24

5×7-4×6=35-24=11

Hope it helps you!

Similar questions