Math, asked by darky8618, 1 year ago

Show that \rm (n+1)\  ^{n}P_{r} = \rm (n-r+1)\  ^{(n+1)}P_{r}.

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:


Results used:


1.nP_r=\frac{n!}{(n-r)!}


2. n! = (n-1)! n



(n+1)\:nP_r\\\\=(n+1)\frac{n!}{(n-r)!}\\\\=\frac{n!(n+1)}{(n-r)!}


Multiply both numerator and denominator

by (n-r+1)


=(n-r+1)\frac{n!(n+1)}{(n-r)!(n-r+1)}\\\\=(n-r+1)\frac{n!(n+1)}{(n-r)!(n+1-r)}\\\\=(n-r+1)\frac{(n+1)!}{(n+1-r)!}\\\\=(n-r+1)\:(n+1)P_r

Similar questions