Math, asked by GoldenCasket, 19 days ago

Show that :
 \rm \: tan75 \degree =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = 2 +  \sqrt{3}
Hence deduce that
 \rm \: tan \: 75 \degree - cot 75 \degree = 4sin60 \degree
Relevant Answers Needed !​

Answers

Answered by mathdude500
56

\large\underline{\sf{Solution-}}

Consider,

\rm \: tan75\degree

\rm \:  =  \: tan(45\degree  + 30\degree )

We know,

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{tan45\degree  + tan30\degree }{1 - tan45\degree  \: tan30\degree }

\rm \:  =  \: \dfrac{1 +  \dfrac{1}{ \sqrt{3} } }{1  -  \dfrac{1}{ \sqrt{3} } }

 \red{\rm \:  =  \: \dfrac{ \sqrt{3} + 1}{ \sqrt{3} - 1} }

So, on rationalizing the denominator, we get

{\rm \:  =  \: \dfrac{ \sqrt{3} + 1}{ \sqrt{3} - 1} } \times \dfrac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}

\rm \:  =  \: \dfrac{ {( \sqrt{3} + 1) }^{2} }{ {( \sqrt{3} )}^{2}  -  {1}^{2} }

\rm \:  =  \: \dfrac{3 + 1 + 2 \sqrt{3} }{3 - 1}

\rm \:  =  \: \dfrac{4 + 2 \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2(2 + \sqrt{3})}{2}

 \red{\rm \:  =  \: 2 +  \sqrt{3} }

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 } = 2 +  \sqrt{3} \: }} \\

Now, Consider

\rm \: tan75\degree  + cot75\degree

\rm \:  =  \: 2 +  \sqrt{3} - \dfrac{1}{2 +  \sqrt{3} }

\rm \:  =  \: 2 +  \sqrt{3} - \dfrac{1}{2 +  \sqrt{3} } \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm \:  =  \: 2 +  \sqrt{3} - \dfrac{2 -  \sqrt{3} }{ {2}^{2} - (\sqrt{3})^{2} }

\rm \:  =  \: 2 +  \sqrt{3} - \dfrac{2 -  \sqrt{3} }{ 4 - 3 }

\rm \:  =  \: 2 +  \sqrt{3} - (2 -  \sqrt{3})

\rm \:  =  \: 2 +  \sqrt{3} - 2  +   \sqrt{3}

\rm \:  =  \: 2 \sqrt{3}

can be rewritten as

\rm \:  =  \: 4 \times \dfrac{ \sqrt{3} }{2}

\rm \:  =  \: 4 sin60\degree

Hence,

\rm\implies \:\boxed{\tt{ \rm \:tan75\degree  - cot75\degree   =  \: 4 sin60\degree \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Identities Used

\boxed{\tt{  {(x + y)}^{2} =  {x}^{2} +  {y}^{2}  + 2xy \: }} \\

\boxed{\tt{  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ sin(x + y) = sinxcosy + sinycosx \: }} \\

\boxed{\tt{ sin(x - y) = sinxcosy -  sinycosx \: }} \\

\boxed{\tt{ cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \: }} \\

\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:   +  \: sinx \: siny \: }} \\

\boxed{\tt{ tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \: }} \\

\boxed{\tt{  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y) \: }} \\

\boxed{\tt{  {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y) \: }} \\

Answered by ElegantManner
42

    \mid\overline{\underline{\bf Question}} \mid

Show that

 \rm \: tan75 \degree = \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 } = 2 + \sqrt{3}

Hence deduce that

 \rm \: tan \: 75 \degree - cot 75 \degree = 4sin60 \degree

  \huge\tt Solution

Simply while proving the above trigonometrical identity first of all we'll start with LHS i.e, tan 75° and bring it equal to 2 + ✓3 after that we will bring the middle term to the same condition by simply rationalizing it.

In second part , in place of tan 75° we'll put the above value and hence prove the second equation.

Now , Let's Proceed !

 \rm \: tan75 \degree = \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 } = 2 + \sqrt{3}

Take L.H.S (or First term)

 \tan75 \degree = \tan(45  \degree+ 30 \degree)

We break it to 45° and 30° because their value are known !

We know that ,

 \underbrace{ \overbrace{ \rm \tan(A + B)  =  \dfrac{tanA + tanB}{1 - tanA tanB} }}

Therefore,

 \rm \tan(45 \degree + 30 \degree) =   \dfrac{tan45 \degree + tan30 \degree}{1 - tan45 \degree \:  tan30 \degree}

 : \implies  \dfrac{1 +  \dfrac{1}{ \sqrt{3}} }{1 -  \dfrac{1}{ \sqrt{3} } }  =  \dfrac{ \sqrt{3 } + 1 }{ \sqrt{3} - 1}  \rightarrow(2)

Now , observe that we have prove first term equal to the second term now let's prove these both terms equal to the third term .

On rationalizing the (2) eq

  \therefore\dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 } \times \dfrac{ \sqrt{3}   + 1 }{ \sqrt{3}   +   1 }

  \rm\dfrac{ (\sqrt{3}) ^{2} + 1 + 2 \sqrt{3}  }{3 - 1}  =  \dfrac{3 + 1 + 2 \sqrt{3} }{2}  \\  =  \frac{4 + 2 \sqrt{3} }{2} =  \frac{ \cancel2(2 +  \sqrt{3})}{ \cancel2}  \\   \red{= 2 +  \sqrt{3} }

Hence , proved the above trigonometrical identity.

Part 2

Now , instead of tan 75 ° we'll use the above obtained value.

Before that Note the below procedure for cot 75 °

 \cot  75 ° =  \dfrac{1}{ \tan75 °}  \\  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  =  \dfrac{2 -  \sqrt{3} }{4 - 3}  \\   \red{ = 2 -  \sqrt{3} }  \longrightarrow( \star)

Now use this in other proving Identity

 = 2 +  \sqrt{3}  - (2 -  \sqrt{3}) \\ =  \cancel2 +  \sqrt{3}   -  \cancel2 -  \sqrt{3}  \\  = 2 \sqrt{3}

Multiply and divide it with 2 .

2 \sqrt{3}  = 4 \times  \dfrac{ \sqrt{3} }{2}    \\ \red{= 4 \sin60 \degree }

Hence , Deduced ✔︎

Thankyou

Similar questions