show that ...
Answers
Answer:
solve
Step-by-step explanation:
see attachments.
Answer- The above question is from the chapter 'Introduction to Trigonometry'.
Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.
Trigonometric Ratios:
sin θ = Perpendicular/Hypotenuse
cos θ = Base/Hypotenuse
tan θ = Perpendicular/Base
cosec θ = Hypotenuse/Perpendicular
sec θ = Hypotenuse/Base
cot θ = Base/Perpendicular
Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ.
Trigonometric Identites:
1. sin²θ + cos²θ = 1
2. sec²θ - tan²θ = 1
3. cosec²θ - cot²θ = 1
Given question: Show that (sec a - tan a)² = (1 - sin a)/(1 + sin a)
Solution: R.H.S. = (1 - sin a)/(1 + sin a)
= (1 - sin a)/(1 + sin a) × (1 - sin a)/(1 - sin a)
= (1 - sin a)²/(1 - sin² a)
= (1 - sin a)²/(cos² a)
= (1 - sin a)²/(cos a)²
= [(1/cos a) - (sin a/cos a)]²
= (sec a - tan a)²
= L.H.S.
Concept used:
1) sin² a + cos² a = 1
⇒ cos² a = 1 - sin² a
2) cos² a = (cos a)²
3) sec a = 1/cos a
4) tan a = sin a/cos a