Math, asked by guptaananya2005, 5 hours ago

Show that

 \sf \: 5x \leqslant 8sinx - sin2x \leqslant 6x \: for \: all \: 0 \leqslant x \leqslant  \frac{\pi}{3}

Quality answer please.

Spammers please far away.

Moderators or stars or genius please answer.

Thank you in advance ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\red{\rm :\longmapsto\: f(x) \:  =  \: 8sinx - sin2x  \:  \:  \:  \:  \:  \:  \forall  \:  \: \: 0 \leqslant x \leqslant \dfrac{\pi}{3}}

Now,

\rm :\longmapsto\: f(x) \:  =  \: 8sinx - sin2x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) \:  =  \dfrac{d}{dx}\: (8sinx - sin2x)

\rm :\longmapsto\:f'(x) =  8cosx - 2cos2x -  -  -  - (1)

Again on differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f'(x) =\dfrac{d}{dx}(  8cosx - 2cos2x)

\rm :\longmapsto\:f''(x) =  - 8sinx + 4sin2x

\rm :\longmapsto\:f''(x) =  - 8sinx + 4(2 \: sinx \: cosx)

\rm :\longmapsto\:f''(x) =  - 8sinx + 8 \: sinx \: cosx

\rm :\longmapsto\:f''(x) =  - 8sinx (1 - cosx)

As,

\boxed{ \rm \:0  \leqslant  x  \leqslant \dfrac{\pi}{3}}

\bf\implies \:f''(x) =  - 8sinx(1 - cosx) \leqslant 0

\bf\implies \:f'(x) \: is \: decreasing \: function \: on \: 0 \leqslant x \leqslant \dfrac{\pi}{3}

So, by definition of decreasing function,

\rm :\longmapsto\:f'\bigg[\dfrac{\pi}{3} \bigg] \leqslant f'(x) \leqslant f'(0)

\rm :\longmapsto\:8cos\bigg[\dfrac{\pi}{3} \bigg] - 2cos\bigg[\dfrac{2\pi}{3} \bigg] \leqslant f'(x) \leqslant 8cos0 - 2cos0

\rm :\longmapsto\:8 \times \dfrac{1}{2}  - 2 \times \dfrac{( - 1)}{2} \leqslant f'(x) \leqslant 8 - 2

\rm :\longmapsto\:4 + 1 \leqslant f'(x) \leqslant 6

\rm :\longmapsto\:5 \leqslant f'(x) \leqslant 6

So, on integrating with respect to x, between 0 to x, we get

\rm :\longmapsto\:\displaystyle\int_0^x 5 dx\leqslant \displaystyle\int_0^x f'(x)dx \leqslant \displaystyle\int_0^x 6dx

\rm :\longmapsto\:\bigg[5x\bigg]_0^x  \leqslant \bigg[f(x)\bigg]_0^x \leqslant \bigg[6x\bigg]_0^x

\rm :\longmapsto\:5x \leqslant f(x) - f(0) \leqslant 6x

\rm :\longmapsto\:5x \leqslant (8sinx - sin2x) - (8sin0 - sin0) \leqslant 6x

\rm :\longmapsto\:5x \leqslant (8sinx - sin2x) - (0 - 0) \leqslant 6x

\rm :\longmapsto\:5x \leqslant 8sinx - sin2x \leqslant 6x

Hence, Proved

Similar questions