Math, asked by ShaikNazriya, 1 month ago

Show that

 \sf log_{e} \sqrt{12}  = 1 + \Bigg(  \dfrac{ 1}{2}  +  \dfrac{1}{3}\Bigg)  \dfrac{1}{4}  + \Bigg(  \dfrac{ 1}{4}  +  \dfrac{1}{5} \Bigg) \dfrac{1}{ {4}^{2} }  + \Bigg(  \dfrac{1}{6}  +  \dfrac{1}{7} \Bigg ) \dfrac{1}{ {4}^{3} }  + ....

Answers

Answered by ApprenticeIAS
46

 \rm{Consider \:  the  \: R.H.S = \:  \sf 1 + \Bigg( \dfrac{ 1}{2} + \dfrac{1}{3}\Bigg) \dfrac{1}{4} + \Bigg( \dfrac{ 1}{4} + \dfrac{1}{5} \Bigg) \dfrac{1}{ {4}^{2} } + \Bigg( \dfrac{1}{6} + \dfrac{1}{7} \Bigg ) \dfrac{1}{ {4}^{3} } + ....  } \\

  \sf = \Bigg(  \dfrac{1}{2}. \dfrac{1}{4} +  \dfrac{1}{4} . \dfrac{1}{ {4}^{2} }   +  \dfrac{1}{6} . \dfrac{1}{ {4}^{3} }  + ... \Bigg ) + \Bigg( 1 +  \dfrac{1}{3}. \dfrac{1}{4}  +  \dfrac{1}{5}. \dfrac{1}{ {4}^{2} }  +  \dfrac{1}{7} . \dfrac{1}{ {4}^{3} }   + ... \Bigg ) \\

\sf \:  = \Bigg [  \dfrac{1}{2} .\bigg( { \dfrac{1}{2}\bigg)  }^{2}  +  \dfrac{1}{4}  \bigg(  { \dfrac{1}{2}\bigg ) }^{4}  +  \dfrac{1}{6} \bigg(  { \dfrac{1}{2}\bigg ) }^{6}  + ...\Bigg ] + \Bigg [ 1 +  \dfrac{1}{3} .\bigg( { \dfrac{1}{2}\bigg)  }^{2}  +  \dfrac{1}{5}  \bigg(  { \dfrac{1}{2}\bigg ) }^{4}  +  \dfrac{1}{7} \bigg(  { \dfrac{1}{2}\bigg ) }^{6}  + ...\Bigg ] \\

 \sf   = \Bigg[   \dfrac{1}{2}  {x}^{2}  +  \dfrac{1}{4}  {x}^{4}  +  \dfrac{1}{6}  {x}^{6}  + ...\Bigg ] + \Bigg[ 1 +   \dfrac{1}{3}  {x}^{2}  +  \dfrac{1}{5}  {x}^{4}  +  \dfrac{1}{6}  {x}^{7}  + ...\Bigg ] \:  \:  \:  \:  \:  \:  \:  \bigg(taking \: x =  \dfrac{1}{2}  \bigg) \\

 \sf  = \dfrac{1}{2}  \bigg \{ {x}^{2}  +  \dfrac{1}{2}  {x}^{4}  +  \dfrac{1}{3}  {x}^{6}  + ... \bigg \} +  \sf \dfrac{1}{x}  \bigg \{ x  +  \dfrac{1}{3}  {x}^{3}  +  \dfrac{1}{5}  {x}^{5}  + ... \bigg \} \\

 \sf =  -  \dfrac{1}{2}  log_{e}(1 -  {x}^{2} )  +  \dfrac{1}{2x}  log_{e} \bigg( \dfrac{1 + x}{1 - x}  \bigg) \\

 \sf \:  =  -  \dfrac{1}{2}  log_{e} \bigg(1 -  \dfrac{1}{4}  \bigg)  +  log_{e}\Bigg (  \dfrac{ 1 + \dfrac{1}{2} }{1 -  \dfrac{1}{2} } \Bigg ) \\

 \sf \:  =  \:  -  \dfrac{1}{2}  log_{e} \bigg( \dfrac{3}{4}  \bigg) +  log_{e}(3)  =  -  \dfrac{1}{2}  log_{e} \bigg( \dfrac{3}{4}  \bigg )  +  \dfrac{1}{2}  log_{e}(9) \\

  \sf=  \dfrac{1}{2}  log_{e} \bigg(  \dfrac{9 \times 4}{3} \bigg) \\

 \sf \:  =  \dfrac{ log_{e}(12) }{2} \\

 \sf  \boxed{ \boxed{ \sf  = log_{e}( \sqrt{12} ) }}

Similar questions